EEG-based emotion recognition during watching movies
This study aims at finding the relationship between EEG signals and human emotions. EEG signals are used to classify two kinds of emotions, positive and negative. First, we extracted features from original EEG data and used a linear dynamic system approach to smooth these features. An average test a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 670 |
---|---|
container_issue | |
container_start_page | 667 |
container_title | |
container_volume | |
creator | Dan Nie Xiao-Wei Wang Li-Chen Shi Bao-Liang Lu |
description | This study aims at finding the relationship between EEG signals and human emotions. EEG signals are used to classify two kinds of emotions, positive and negative. First, we extracted features from original EEG data and used a linear dynamic system approach to smooth these features. An average test accuracy of 87.53% was obtained by using all of the features together with a support vector machine. Next, we reduced the dimension of features through correlation coefficients. The top 100 and top 50 subject-independent features were achieved, with average test accuracies of 89.22% and 84.94%, respectively. Finally, a manifold model was applied to find the trajectory of emotion changes. |
doi_str_mv | 10.1109/NER.2011.5910636 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5910636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5910636</ieee_id><sourcerecordid>5910636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1a485c84b3d7c3c2164930063678e9d48ca17c143911572ffea119aff56ba1f3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhePHwG32XvCmf6D1fZM3bXIpo5vCUJDdjzRNZsS20lTFfy_V6dV54IED5zB2hZAjgr55qJ5yDoi51AiFKE7YAokTERLyUzZHTSoTUtIZS3Sp_hzw839HxYwtOIDWMIkLlsT4AgCCA6FWc0ZVtclqE12TurYfQ9-lg7P9oQs_3LwPoTukn2a0zxO0_Udw8ZLNvHmNLjnmku3W1W51l20fN_er221muVJjhoaUtIpq0ZRWWI4FaQHTklI53ZCyBkuLJDSiLLn3ziBq470saoNeLNn1b21wzu3fhtCa4Wt_PEN8A0QPSoY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>EEG-based emotion recognition during watching movies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dan Nie ; Xiao-Wei Wang ; Li-Chen Shi ; Bao-Liang Lu</creator><creatorcontrib>Dan Nie ; Xiao-Wei Wang ; Li-Chen Shi ; Bao-Liang Lu</creatorcontrib><description>This study aims at finding the relationship between EEG signals and human emotions. EEG signals are used to classify two kinds of emotions, positive and negative. First, we extracted features from original EEG data and used a linear dynamic system approach to smooth these features. An average test accuracy of 87.53% was obtained by using all of the features together with a support vector machine. Next, we reduced the dimension of features through correlation coefficients. The top 100 and top 50 subject-independent features were achieved, with average test accuracies of 89.22% and 84.94%, respectively. Finally, a manifold model was applied to find the trajectory of emotion changes.</description><identifier>ISSN: 1948-3546</identifier><identifier>ISBN: 9781424441402</identifier><identifier>ISBN: 1424441404</identifier><identifier>EISSN: 1948-3554</identifier><identifier>EISBN: 1424441412</identifier><identifier>EISBN: 9781424441419</identifier><identifier>DOI: 10.1109/NER.2011.5910636</identifier><identifier>LCCN: 2009901402</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Electroencephalography ; Emotion recognition ; Humans ; Manifolds ; Motion pictures ; Trajectory</subject><ispartof>2011 5th International IEEE/EMBS Conference on Neural Engineering, 2011, p.667-670</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-1a485c84b3d7c3c2164930063678e9d48ca17c143911572ffea119aff56ba1f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5910636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5910636$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dan Nie</creatorcontrib><creatorcontrib>Xiao-Wei Wang</creatorcontrib><creatorcontrib>Li-Chen Shi</creatorcontrib><creatorcontrib>Bao-Liang Lu</creatorcontrib><title>EEG-based emotion recognition during watching movies</title><title>2011 5th International IEEE/EMBS Conference on Neural Engineering</title><addtitle>NER</addtitle><description>This study aims at finding the relationship between EEG signals and human emotions. EEG signals are used to classify two kinds of emotions, positive and negative. First, we extracted features from original EEG data and used a linear dynamic system approach to smooth these features. An average test accuracy of 87.53% was obtained by using all of the features together with a support vector machine. Next, we reduced the dimension of features through correlation coefficients. The top 100 and top 50 subject-independent features were achieved, with average test accuracies of 89.22% and 84.94%, respectively. Finally, a manifold model was applied to find the trajectory of emotion changes.</description><subject>Accuracy</subject><subject>Electroencephalography</subject><subject>Emotion recognition</subject><subject>Humans</subject><subject>Manifolds</subject><subject>Motion pictures</subject><subject>Trajectory</subject><issn>1948-3546</issn><issn>1948-3554</issn><isbn>9781424441402</isbn><isbn>1424441404</isbn><isbn>1424441412</isbn><isbn>9781424441419</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhePHwG32XvCmf6D1fZM3bXIpo5vCUJDdjzRNZsS20lTFfy_V6dV54IED5zB2hZAjgr55qJ5yDoi51AiFKE7YAokTERLyUzZHTSoTUtIZS3Sp_hzw839HxYwtOIDWMIkLlsT4AgCCA6FWc0ZVtclqE12TurYfQ9-lg7P9oQs_3LwPoTukn2a0zxO0_Udw8ZLNvHmNLjnmku3W1W51l20fN_er221muVJjhoaUtIpq0ZRWWI4FaQHTklI53ZCyBkuLJDSiLLn3ziBq470saoNeLNn1b21wzu3fhtCa4Wt_PEN8A0QPSoY</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Dan Nie</creator><creator>Xiao-Wei Wang</creator><creator>Li-Chen Shi</creator><creator>Bao-Liang Lu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>EEG-based emotion recognition during watching movies</title><author>Dan Nie ; Xiao-Wei Wang ; Li-Chen Shi ; Bao-Liang Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1a485c84b3d7c3c2164930063678e9d48ca17c143911572ffea119aff56ba1f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Electroencephalography</topic><topic>Emotion recognition</topic><topic>Humans</topic><topic>Manifolds</topic><topic>Motion pictures</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Dan Nie</creatorcontrib><creatorcontrib>Xiao-Wei Wang</creatorcontrib><creatorcontrib>Li-Chen Shi</creatorcontrib><creatorcontrib>Bao-Liang Lu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dan Nie</au><au>Xiao-Wei Wang</au><au>Li-Chen Shi</au><au>Bao-Liang Lu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EEG-based emotion recognition during watching movies</atitle><btitle>2011 5th International IEEE/EMBS Conference on Neural Engineering</btitle><stitle>NER</stitle><date>2011-04</date><risdate>2011</risdate><spage>667</spage><epage>670</epage><pages>667-670</pages><issn>1948-3546</issn><eissn>1948-3554</eissn><isbn>9781424441402</isbn><isbn>1424441404</isbn><eisbn>1424441412</eisbn><eisbn>9781424441419</eisbn><abstract>This study aims at finding the relationship between EEG signals and human emotions. EEG signals are used to classify two kinds of emotions, positive and negative. First, we extracted features from original EEG data and used a linear dynamic system approach to smooth these features. An average test accuracy of 87.53% was obtained by using all of the features together with a support vector machine. Next, we reduced the dimension of features through correlation coefficients. The top 100 and top 50 subject-independent features were achieved, with average test accuracies of 89.22% and 84.94%, respectively. Finally, a manifold model was applied to find the trajectory of emotion changes.</abstract><pub>IEEE</pub><doi>10.1109/NER.2011.5910636</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-3546 |
ispartof | 2011 5th International IEEE/EMBS Conference on Neural Engineering, 2011, p.667-670 |
issn | 1948-3546 1948-3554 |
language | eng |
recordid | cdi_ieee_primary_5910636 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Electroencephalography Emotion recognition Humans Manifolds Motion pictures Trajectory |
title | EEG-based emotion recognition during watching movies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EEG-based%20emotion%20recognition%20during%20watching%20movies&rft.btitle=2011%205th%20International%20IEEE/EMBS%20Conference%20on%20Neural%20Engineering&rft.au=Dan%20Nie&rft.date=2011-04&rft.spage=667&rft.epage=670&rft.pages=667-670&rft.issn=1948-3546&rft.eissn=1948-3554&rft.isbn=9781424441402&rft.isbn_list=1424441404&rft_id=info:doi/10.1109/NER.2011.5910636&rft_dat=%3Cieee_6IE%3E5910636%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441412&rft.eisbn_list=9781424441419&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5910636&rfr_iscdi=true |