Identifying and tracking online financial services through web mining and latent semantic indexing
As Internet usage has heavily increased within recent years, money launderers have started to take advantage of Online Financial Transaction (OFT) services to facilitate their money laundering activities. However, law enforcement has struggled to understand and detect OFT services that criminals use...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | |
container_start_page | 158 |
container_title | |
container_volume | |
creator | Bernard, K. Cassidy, A. Clark, M. Liu, K. Lobaton, K. McNeill, D. Brown, D. |
description | As Internet usage has heavily increased within recent years, money launderers have started to take advantage of Online Financial Transaction (OFT) services to facilitate their money laundering activities. However, law enforcement has struggled to understand and detect OFT services that criminals use for money laundering. To assist law enforcement in its efforts to identify and monitor OFT services, we have designed the Online Financial Transaction Services Identification Tool (OFTSIT), which crawls the Internet and determines the probability that they are OFT services. OFTSIT analyzes a website's content and extracts textual features using latent semantic indexing (LSI). LSI is a text mining approach that can extract a small number ( |
doi_str_mv | 10.1109/SIEDS.2011.5876870 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5876870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5876870</ieee_id><sourcerecordid>5876870</sourcerecordid><originalsourceid>FETCH-LOGICAL-g230t-b0f235f904ec9e54b1d6087eae7a15dc00304c5f5251b5e976841a802fadfa843</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhI0QEqjkBeDiF2hYJ3bsHFEpNFIlDoVztbHXqSFxURJ--vYEUQ7sZTSa2U_aZexKQCoElDebanm3STMQIlVGF0bDCUtKbYRUWoOUWp3-84U5Z8kwvMA0RVEWUl6wunIUx-APITYco-Njj_b1x-xjGyJxHyJGG7DlA_UfwdLAx12_f292_JNq3oX4t9niOKGmWocT0fIQHX1N4SU789gOlBx1xp7vl0-L1Xz9-FAtbtfzJsthnNfgs1z5EiTZkpSshSvAaELSKJSzADlIq7zKlKgVldPBUqCBzKPzaGQ-Y9e_3EBE27c-dNgftsfP5N_5glip</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identifying and tracking online financial services through web mining and latent semantic indexing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bernard, K. ; Cassidy, A. ; Clark, M. ; Liu, K. ; Lobaton, K. ; McNeill, D. ; Brown, D.</creator><creatorcontrib>Bernard, K. ; Cassidy, A. ; Clark, M. ; Liu, K. ; Lobaton, K. ; McNeill, D. ; Brown, D.</creatorcontrib><description>As Internet usage has heavily increased within recent years, money launderers have started to take advantage of Online Financial Transaction (OFT) services to facilitate their money laundering activities. However, law enforcement has struggled to understand and detect OFT services that criminals use for money laundering. To assist law enforcement in its efforts to identify and monitor OFT services, we have designed the Online Financial Transaction Services Identification Tool (OFTSIT), which crawls the Internet and determines the probability that they are OFT services. OFTSIT analyzes a website's content and extracts textual features using latent semantic indexing (LSI). LSI is a text mining approach that can extract a small number (<; 10) of features from more than 40,000 possible words on a website. OFTSIT inputs the LSI discovered features into a generalized linear model to produce the probability that a website is an OFT service. Testing showed that OFTSIT outperforms current method of manual searching. This paper describes the system architecture, algorithms employed to classify OFT services from other websites, and performance testing to demonstrate OFTSIT's operational relevance.</description><identifier>ISBN: 9781457704468</identifier><identifier>ISBN: 1457704463</identifier><identifier>EISBN: 9781457704475</identifier><identifier>EISBN: 1457704471</identifier><identifier>EISBN: 9781457704451</identifier><identifier>EISBN: 1457704455</identifier><identifier>DOI: 10.1109/SIEDS.2011.5876870</identifier><language>eng</language><publisher>IEEE</publisher><subject>Indexes ; Internet ; Large scale integration ; Law enforcement ; Logistics ; Text mining ; Training</subject><ispartof>2011 IEEE Systems and Information Engineering Design Symposium, 2011, p.158-163</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5876870$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5876870$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bernard, K.</creatorcontrib><creatorcontrib>Cassidy, A.</creatorcontrib><creatorcontrib>Clark, M.</creatorcontrib><creatorcontrib>Liu, K.</creatorcontrib><creatorcontrib>Lobaton, K.</creatorcontrib><creatorcontrib>McNeill, D.</creatorcontrib><creatorcontrib>Brown, D.</creatorcontrib><title>Identifying and tracking online financial services through web mining and latent semantic indexing</title><title>2011 IEEE Systems and Information Engineering Design Symposium</title><addtitle>SIEDS</addtitle><description>As Internet usage has heavily increased within recent years, money launderers have started to take advantage of Online Financial Transaction (OFT) services to facilitate their money laundering activities. However, law enforcement has struggled to understand and detect OFT services that criminals use for money laundering. To assist law enforcement in its efforts to identify and monitor OFT services, we have designed the Online Financial Transaction Services Identification Tool (OFTSIT), which crawls the Internet and determines the probability that they are OFT services. OFTSIT analyzes a website's content and extracts textual features using latent semantic indexing (LSI). LSI is a text mining approach that can extract a small number (<; 10) of features from more than 40,000 possible words on a website. OFTSIT inputs the LSI discovered features into a generalized linear model to produce the probability that a website is an OFT service. Testing showed that OFTSIT outperforms current method of manual searching. This paper describes the system architecture, algorithms employed to classify OFT services from other websites, and performance testing to demonstrate OFTSIT's operational relevance.</description><subject>Indexes</subject><subject>Internet</subject><subject>Large scale integration</subject><subject>Law enforcement</subject><subject>Logistics</subject><subject>Text mining</subject><subject>Training</subject><isbn>9781457704468</isbn><isbn>1457704463</isbn><isbn>9781457704475</isbn><isbn>1457704471</isbn><isbn>9781457704451</isbn><isbn>1457704455</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhI0QEqjkBeDiF2hYJ3bsHFEpNFIlDoVztbHXqSFxURJ--vYEUQ7sZTSa2U_aZexKQCoElDebanm3STMQIlVGF0bDCUtKbYRUWoOUWp3-84U5Z8kwvMA0RVEWUl6wunIUx-APITYco-Njj_b1x-xjGyJxHyJGG7DlA_UfwdLAx12_f292_JNq3oX4t9niOKGmWocT0fIQHX1N4SU789gOlBx1xp7vl0-L1Xz9-FAtbtfzJsthnNfgs1z5EiTZkpSshSvAaELSKJSzADlIq7zKlKgVldPBUqCBzKPzaGQ-Y9e_3EBE27c-dNgftsfP5N_5glip</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Bernard, K.</creator><creator>Cassidy, A.</creator><creator>Clark, M.</creator><creator>Liu, K.</creator><creator>Lobaton, K.</creator><creator>McNeill, D.</creator><creator>Brown, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Identifying and tracking online financial services through web mining and latent semantic indexing</title><author>Bernard, K. ; Cassidy, A. ; Clark, M. ; Liu, K. ; Lobaton, K. ; McNeill, D. ; Brown, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g230t-b0f235f904ec9e54b1d6087eae7a15dc00304c5f5251b5e976841a802fadfa843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Indexes</topic><topic>Internet</topic><topic>Large scale integration</topic><topic>Law enforcement</topic><topic>Logistics</topic><topic>Text mining</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernard, K.</creatorcontrib><creatorcontrib>Cassidy, A.</creatorcontrib><creatorcontrib>Clark, M.</creatorcontrib><creatorcontrib>Liu, K.</creatorcontrib><creatorcontrib>Lobaton, K.</creatorcontrib><creatorcontrib>McNeill, D.</creatorcontrib><creatorcontrib>Brown, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bernard, K.</au><au>Cassidy, A.</au><au>Clark, M.</au><au>Liu, K.</au><au>Lobaton, K.</au><au>McNeill, D.</au><au>Brown, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identifying and tracking online financial services through web mining and latent semantic indexing</atitle><btitle>2011 IEEE Systems and Information Engineering Design Symposium</btitle><stitle>SIEDS</stitle><date>2011-04</date><risdate>2011</risdate><spage>158</spage><epage>163</epage><pages>158-163</pages><isbn>9781457704468</isbn><isbn>1457704463</isbn><eisbn>9781457704475</eisbn><eisbn>1457704471</eisbn><eisbn>9781457704451</eisbn><eisbn>1457704455</eisbn><abstract>As Internet usage has heavily increased within recent years, money launderers have started to take advantage of Online Financial Transaction (OFT) services to facilitate their money laundering activities. However, law enforcement has struggled to understand and detect OFT services that criminals use for money laundering. To assist law enforcement in its efforts to identify and monitor OFT services, we have designed the Online Financial Transaction Services Identification Tool (OFTSIT), which crawls the Internet and determines the probability that they are OFT services. OFTSIT analyzes a website's content and extracts textual features using latent semantic indexing (LSI). LSI is a text mining approach that can extract a small number (<; 10) of features from more than 40,000 possible words on a website. OFTSIT inputs the LSI discovered features into a generalized linear model to produce the probability that a website is an OFT service. Testing showed that OFTSIT outperforms current method of manual searching. This paper describes the system architecture, algorithms employed to classify OFT services from other websites, and performance testing to demonstrate OFTSIT's operational relevance.</abstract><pub>IEEE</pub><doi>10.1109/SIEDS.2011.5876870</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457704468 |
ispartof | 2011 IEEE Systems and Information Engineering Design Symposium, 2011, p.158-163 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5876870 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Indexes Internet Large scale integration Law enforcement Logistics Text mining Training |
title | Identifying and tracking online financial services through web mining and latent semantic indexing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identifying%20and%20tracking%20online%20financial%20services%20through%20web%20mining%20and%20latent%20semantic%20indexing&rft.btitle=2011%20IEEE%20Systems%20and%20Information%20Engineering%20Design%20Symposium&rft.au=Bernard,%20K.&rft.date=2011-04&rft.spage=158&rft.epage=163&rft.pages=158-163&rft.isbn=9781457704468&rft.isbn_list=1457704463&rft_id=info:doi/10.1109/SIEDS.2011.5876870&rft_dat=%3Cieee_6IE%3E5876870%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457704475&rft.eisbn_list=1457704471&rft.eisbn_list=9781457704451&rft.eisbn_list=1457704455&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5876870&rfr_iscdi=true |