Identifying and tracking online financial services through web mining and latent semantic indexing

As Internet usage has heavily increased within recent years, money launderers have started to take advantage of Online Financial Transaction (OFT) services to facilitate their money laundering activities. However, law enforcement has struggled to understand and detect OFT services that criminals use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bernard, K., Cassidy, A., Clark, M., Liu, K., Lobaton, K., McNeill, D., Brown, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue
container_start_page 158
container_title
container_volume
creator Bernard, K.
Cassidy, A.
Clark, M.
Liu, K.
Lobaton, K.
McNeill, D.
Brown, D.
description As Internet usage has heavily increased within recent years, money launderers have started to take advantage of Online Financial Transaction (OFT) services to facilitate their money laundering activities. However, law enforcement has struggled to understand and detect OFT services that criminals use for money laundering. To assist law enforcement in its efforts to identify and monitor OFT services, we have designed the Online Financial Transaction Services Identification Tool (OFTSIT), which crawls the Internet and determines the probability that they are OFT services. OFTSIT analyzes a website's content and extracts textual features using latent semantic indexing (LSI). LSI is a text mining approach that can extract a small number (
doi_str_mv 10.1109/SIEDS.2011.5876870
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5876870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5876870</ieee_id><sourcerecordid>5876870</sourcerecordid><originalsourceid>FETCH-LOGICAL-g230t-b0f235f904ec9e54b1d6087eae7a15dc00304c5f5251b5e976841a802fadfa843</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhI0QEqjkBeDiF2hYJ3bsHFEpNFIlDoVztbHXqSFxURJ--vYEUQ7sZTSa2U_aZexKQCoElDebanm3STMQIlVGF0bDCUtKbYRUWoOUWp3-84U5Z8kwvMA0RVEWUl6wunIUx-APITYco-Njj_b1x-xjGyJxHyJGG7DlA_UfwdLAx12_f292_JNq3oX4t9niOKGmWocT0fIQHX1N4SU789gOlBx1xp7vl0-L1Xz9-FAtbtfzJsthnNfgs1z5EiTZkpSshSvAaELSKJSzADlIq7zKlKgVldPBUqCBzKPzaGQ-Y9e_3EBE27c-dNgftsfP5N_5glip</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identifying and tracking online financial services through web mining and latent semantic indexing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bernard, K. ; Cassidy, A. ; Clark, M. ; Liu, K. ; Lobaton, K. ; McNeill, D. ; Brown, D.</creator><creatorcontrib>Bernard, K. ; Cassidy, A. ; Clark, M. ; Liu, K. ; Lobaton, K. ; McNeill, D. ; Brown, D.</creatorcontrib><description>As Internet usage has heavily increased within recent years, money launderers have started to take advantage of Online Financial Transaction (OFT) services to facilitate their money laundering activities. However, law enforcement has struggled to understand and detect OFT services that criminals use for money laundering. To assist law enforcement in its efforts to identify and monitor OFT services, we have designed the Online Financial Transaction Services Identification Tool (OFTSIT), which crawls the Internet and determines the probability that they are OFT services. OFTSIT analyzes a website's content and extracts textual features using latent semantic indexing (LSI). LSI is a text mining approach that can extract a small number (&lt;; 10) of features from more than 40,000 possible words on a website. OFTSIT inputs the LSI discovered features into a generalized linear model to produce the probability that a website is an OFT service. Testing showed that OFTSIT outperforms current method of manual searching. This paper describes the system architecture, algorithms employed to classify OFT services from other websites, and performance testing to demonstrate OFTSIT's operational relevance.</description><identifier>ISBN: 9781457704468</identifier><identifier>ISBN: 1457704463</identifier><identifier>EISBN: 9781457704475</identifier><identifier>EISBN: 1457704471</identifier><identifier>EISBN: 9781457704451</identifier><identifier>EISBN: 1457704455</identifier><identifier>DOI: 10.1109/SIEDS.2011.5876870</identifier><language>eng</language><publisher>IEEE</publisher><subject>Indexes ; Internet ; Large scale integration ; Law enforcement ; Logistics ; Text mining ; Training</subject><ispartof>2011 IEEE Systems and Information Engineering Design Symposium, 2011, p.158-163</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5876870$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5876870$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bernard, K.</creatorcontrib><creatorcontrib>Cassidy, A.</creatorcontrib><creatorcontrib>Clark, M.</creatorcontrib><creatorcontrib>Liu, K.</creatorcontrib><creatorcontrib>Lobaton, K.</creatorcontrib><creatorcontrib>McNeill, D.</creatorcontrib><creatorcontrib>Brown, D.</creatorcontrib><title>Identifying and tracking online financial services through web mining and latent semantic indexing</title><title>2011 IEEE Systems and Information Engineering Design Symposium</title><addtitle>SIEDS</addtitle><description>As Internet usage has heavily increased within recent years, money launderers have started to take advantage of Online Financial Transaction (OFT) services to facilitate their money laundering activities. However, law enforcement has struggled to understand and detect OFT services that criminals use for money laundering. To assist law enforcement in its efforts to identify and monitor OFT services, we have designed the Online Financial Transaction Services Identification Tool (OFTSIT), which crawls the Internet and determines the probability that they are OFT services. OFTSIT analyzes a website's content and extracts textual features using latent semantic indexing (LSI). LSI is a text mining approach that can extract a small number (&lt;; 10) of features from more than 40,000 possible words on a website. OFTSIT inputs the LSI discovered features into a generalized linear model to produce the probability that a website is an OFT service. Testing showed that OFTSIT outperforms current method of manual searching. This paper describes the system architecture, algorithms employed to classify OFT services from other websites, and performance testing to demonstrate OFTSIT's operational relevance.</description><subject>Indexes</subject><subject>Internet</subject><subject>Large scale integration</subject><subject>Law enforcement</subject><subject>Logistics</subject><subject>Text mining</subject><subject>Training</subject><isbn>9781457704468</isbn><isbn>1457704463</isbn><isbn>9781457704475</isbn><isbn>1457704471</isbn><isbn>9781457704451</isbn><isbn>1457704455</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhI0QEqjkBeDiF2hYJ3bsHFEpNFIlDoVztbHXqSFxURJ--vYEUQ7sZTSa2U_aZexKQCoElDebanm3STMQIlVGF0bDCUtKbYRUWoOUWp3-84U5Z8kwvMA0RVEWUl6wunIUx-APITYco-Njj_b1x-xjGyJxHyJGG7DlA_UfwdLAx12_f292_JNq3oX4t9niOKGmWocT0fIQHX1N4SU789gOlBx1xp7vl0-L1Xz9-FAtbtfzJsthnNfgs1z5EiTZkpSshSvAaELSKJSzADlIq7zKlKgVldPBUqCBzKPzaGQ-Y9e_3EBE27c-dNgftsfP5N_5glip</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Bernard, K.</creator><creator>Cassidy, A.</creator><creator>Clark, M.</creator><creator>Liu, K.</creator><creator>Lobaton, K.</creator><creator>McNeill, D.</creator><creator>Brown, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Identifying and tracking online financial services through web mining and latent semantic indexing</title><author>Bernard, K. ; Cassidy, A. ; Clark, M. ; Liu, K. ; Lobaton, K. ; McNeill, D. ; Brown, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g230t-b0f235f904ec9e54b1d6087eae7a15dc00304c5f5251b5e976841a802fadfa843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Indexes</topic><topic>Internet</topic><topic>Large scale integration</topic><topic>Law enforcement</topic><topic>Logistics</topic><topic>Text mining</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernard, K.</creatorcontrib><creatorcontrib>Cassidy, A.</creatorcontrib><creatorcontrib>Clark, M.</creatorcontrib><creatorcontrib>Liu, K.</creatorcontrib><creatorcontrib>Lobaton, K.</creatorcontrib><creatorcontrib>McNeill, D.</creatorcontrib><creatorcontrib>Brown, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bernard, K.</au><au>Cassidy, A.</au><au>Clark, M.</au><au>Liu, K.</au><au>Lobaton, K.</au><au>McNeill, D.</au><au>Brown, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identifying and tracking online financial services through web mining and latent semantic indexing</atitle><btitle>2011 IEEE Systems and Information Engineering Design Symposium</btitle><stitle>SIEDS</stitle><date>2011-04</date><risdate>2011</risdate><spage>158</spage><epage>163</epage><pages>158-163</pages><isbn>9781457704468</isbn><isbn>1457704463</isbn><eisbn>9781457704475</eisbn><eisbn>1457704471</eisbn><eisbn>9781457704451</eisbn><eisbn>1457704455</eisbn><abstract>As Internet usage has heavily increased within recent years, money launderers have started to take advantage of Online Financial Transaction (OFT) services to facilitate their money laundering activities. However, law enforcement has struggled to understand and detect OFT services that criminals use for money laundering. To assist law enforcement in its efforts to identify and monitor OFT services, we have designed the Online Financial Transaction Services Identification Tool (OFTSIT), which crawls the Internet and determines the probability that they are OFT services. OFTSIT analyzes a website's content and extracts textual features using latent semantic indexing (LSI). LSI is a text mining approach that can extract a small number (&lt;; 10) of features from more than 40,000 possible words on a website. OFTSIT inputs the LSI discovered features into a generalized linear model to produce the probability that a website is an OFT service. Testing showed that OFTSIT outperforms current method of manual searching. This paper describes the system architecture, algorithms employed to classify OFT services from other websites, and performance testing to demonstrate OFTSIT's operational relevance.</abstract><pub>IEEE</pub><doi>10.1109/SIEDS.2011.5876870</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457704468
ispartof 2011 IEEE Systems and Information Engineering Design Symposium, 2011, p.158-163
issn
language eng
recordid cdi_ieee_primary_5876870
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Indexes
Internet
Large scale integration
Law enforcement
Logistics
Text mining
Training
title Identifying and tracking online financial services through web mining and latent semantic indexing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identifying%20and%20tracking%20online%20financial%20services%20through%20web%20mining%20and%20latent%20semantic%20indexing&rft.btitle=2011%20IEEE%20Systems%20and%20Information%20Engineering%20Design%20Symposium&rft.au=Bernard,%20K.&rft.date=2011-04&rft.spage=158&rft.epage=163&rft.pages=158-163&rft.isbn=9781457704468&rft.isbn_list=1457704463&rft_id=info:doi/10.1109/SIEDS.2011.5876870&rft_dat=%3Cieee_6IE%3E5876870%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457704475&rft.eisbn_list=1457704471&rft.eisbn_list=9781457704451&rft.eisbn_list=1457704455&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5876870&rfr_iscdi=true