Game theory based bio-inspired techniques for self-positioning autonomous MANET nodes

In this paper, we introduce a new node spreading bio-inspired game (NSBG) combining bio-inspired algorithms and traditional game theory to maximize the area covered by autonomous mobile ad hoc network nodes and to achieve a uniform node distribution while keeping the network connected. NSBG is a dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kusyk, J., Uyar, M. U., Sahin, C. S., Urrea, E., Gundry, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Kusyk, J.
Uyar, M. U.
Sahin, C. S.
Urrea, E.
Gundry, S.
description In this paper, we introduce a new node spreading bio-inspired game (NSBG) combining bio-inspired algorithms and traditional game theory to maximize the area covered by autonomous mobile ad hoc network nodes and to achieve a uniform node distribution while keeping the network connected. NSBG is a distributed and scalable game where each node's selfish actions lead the entire network toward a uniform and stable node distribution without a centralized controller. In NSBG, each mobile node autonomously makes movement decisions based on localized data while the movement probabilities of possible next locations are assigned by a force-based genetic algorithm (FGA). Because FGA takes only into account the current position of the neighboring nodes, our NSBG, combining FGA with traditional and evolutionary game theory, can find even better locations by setting up spatial games among neighbors. NSBG is a good candidate for the node spreading class of applications used in both military and commercial applications. We present a formal analysis of our NSBG to prove that an evolutionary stable state is its convergence point. Simulation experiments demonstrate that NSBG performs well with respect to network area coverage, uniform distribution of mobile nodes, and convergence speed.
doi_str_mv 10.1109/SARNOF.2011.5876440
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5876440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5876440</ieee_id><sourcerecordid>5876440</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-dce75073fedddefd351424cf995bc4ea03fde3911543487505a98eb376f006e3</originalsourceid><addsrcrecordid>eNpVkM1Kw0AcxFdEUGqeoJd9gcTd7PcxlLYKtQVbz2WT_a9dabIxmx769gbsxbkMPxgGZhCaU1JQSszLvvrY7lZFSSgthFaSc3KHMqM0lbTUXGrC7_8xpY8oS-mbTJLSKGae0OfatoDHE8ThimubwOE6xDx0qQ_DBCM0py78XCBhHwec4OzzPqYwhtiF7gvbyxi72MZLwu_VdnnAXXSQntGDt-cE2c1naL9aHhav-Wa3fltUmzwYMuauASWIYh6cc-AdE5SXvPHGiLrhYAnzDpihVHDG9RQV1miomZJ-GgBshuZ_rQEAjv0QWjtcj7cr2C90yVN3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Game theory based bio-inspired techniques for self-positioning autonomous MANET nodes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kusyk, J. ; Uyar, M. U. ; Sahin, C. S. ; Urrea, E. ; Gundry, S.</creator><creatorcontrib>Kusyk, J. ; Uyar, M. U. ; Sahin, C. S. ; Urrea, E. ; Gundry, S.</creatorcontrib><description>In this paper, we introduce a new node spreading bio-inspired game (NSBG) combining bio-inspired algorithms and traditional game theory to maximize the area covered by autonomous mobile ad hoc network nodes and to achieve a uniform node distribution while keeping the network connected. NSBG is a distributed and scalable game where each node's selfish actions lead the entire network toward a uniform and stable node distribution without a centralized controller. In NSBG, each mobile node autonomously makes movement decisions based on localized data while the movement probabilities of possible next locations are assigned by a force-based genetic algorithm (FGA). Because FGA takes only into account the current position of the neighboring nodes, our NSBG, combining FGA with traditional and evolutionary game theory, can find even better locations by setting up spatial games among neighbors. NSBG is a good candidate for the node spreading class of applications used in both military and commercial applications. We present a formal analysis of our NSBG to prove that an evolutionary stable state is its convergence point. Simulation experiments demonstrate that NSBG performs well with respect to network area coverage, uniform distribution of mobile nodes, and convergence speed.</description><identifier>ISBN: 9781612846811</identifier><identifier>ISBN: 1612846815</identifier><identifier>EISBN: 9781612846804</identifier><identifier>EISBN: 1612846807</identifier><identifier>DOI: 10.1109/SARNOF.2011.5876440</identifier><language>eng</language><publisher>IEEE</publisher><subject>bio-inspired algorithm ; Force ; Game theory ; Games ; Genetic algorithms ; MANETs ; Mobile ad hoc networks ; Mobile communication ; Network topology ; node spreading ; Topology control</subject><ispartof>34th IEEE Sarnoff Symposium, 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5876440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5876440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kusyk, J.</creatorcontrib><creatorcontrib>Uyar, M. U.</creatorcontrib><creatorcontrib>Sahin, C. S.</creatorcontrib><creatorcontrib>Urrea, E.</creatorcontrib><creatorcontrib>Gundry, S.</creatorcontrib><title>Game theory based bio-inspired techniques for self-positioning autonomous MANET nodes</title><title>34th IEEE Sarnoff Symposium</title><addtitle>SARNOF</addtitle><description>In this paper, we introduce a new node spreading bio-inspired game (NSBG) combining bio-inspired algorithms and traditional game theory to maximize the area covered by autonomous mobile ad hoc network nodes and to achieve a uniform node distribution while keeping the network connected. NSBG is a distributed and scalable game where each node's selfish actions lead the entire network toward a uniform and stable node distribution without a centralized controller. In NSBG, each mobile node autonomously makes movement decisions based on localized data while the movement probabilities of possible next locations are assigned by a force-based genetic algorithm (FGA). Because FGA takes only into account the current position of the neighboring nodes, our NSBG, combining FGA with traditional and evolutionary game theory, can find even better locations by setting up spatial games among neighbors. NSBG is a good candidate for the node spreading class of applications used in both military and commercial applications. We present a formal analysis of our NSBG to prove that an evolutionary stable state is its convergence point. Simulation experiments demonstrate that NSBG performs well with respect to network area coverage, uniform distribution of mobile nodes, and convergence speed.</description><subject>bio-inspired algorithm</subject><subject>Force</subject><subject>Game theory</subject><subject>Games</subject><subject>Genetic algorithms</subject><subject>MANETs</subject><subject>Mobile ad hoc networks</subject><subject>Mobile communication</subject><subject>Network topology</subject><subject>node spreading</subject><subject>Topology control</subject><isbn>9781612846811</isbn><isbn>1612846815</isbn><isbn>9781612846804</isbn><isbn>1612846807</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Kw0AcxFdEUGqeoJd9gcTd7PcxlLYKtQVbz2WT_a9dabIxmx769gbsxbkMPxgGZhCaU1JQSszLvvrY7lZFSSgthFaSc3KHMqM0lbTUXGrC7_8xpY8oS-mbTJLSKGae0OfatoDHE8ThimubwOE6xDx0qQ_DBCM0py78XCBhHwec4OzzPqYwhtiF7gvbyxi72MZLwu_VdnnAXXSQntGDt-cE2c1naL9aHhav-Wa3fltUmzwYMuauASWIYh6cc-AdE5SXvPHGiLrhYAnzDpihVHDG9RQV1miomZJ-GgBshuZ_rQEAjv0QWjtcj7cr2C90yVN3</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Kusyk, J.</creator><creator>Uyar, M. U.</creator><creator>Sahin, C. S.</creator><creator>Urrea, E.</creator><creator>Gundry, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>Game theory based bio-inspired techniques for self-positioning autonomous MANET nodes</title><author>Kusyk, J. ; Uyar, M. U. ; Sahin, C. S. ; Urrea, E. ; Gundry, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-dce75073fedddefd351424cf995bc4ea03fde3911543487505a98eb376f006e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>bio-inspired algorithm</topic><topic>Force</topic><topic>Game theory</topic><topic>Games</topic><topic>Genetic algorithms</topic><topic>MANETs</topic><topic>Mobile ad hoc networks</topic><topic>Mobile communication</topic><topic>Network topology</topic><topic>node spreading</topic><topic>Topology control</topic><toplevel>online_resources</toplevel><creatorcontrib>Kusyk, J.</creatorcontrib><creatorcontrib>Uyar, M. U.</creatorcontrib><creatorcontrib>Sahin, C. S.</creatorcontrib><creatorcontrib>Urrea, E.</creatorcontrib><creatorcontrib>Gundry, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kusyk, J.</au><au>Uyar, M. U.</au><au>Sahin, C. S.</au><au>Urrea, E.</au><au>Gundry, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Game theory based bio-inspired techniques for self-positioning autonomous MANET nodes</atitle><btitle>34th IEEE Sarnoff Symposium</btitle><stitle>SARNOF</stitle><date>2011-05</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781612846811</isbn><isbn>1612846815</isbn><eisbn>9781612846804</eisbn><eisbn>1612846807</eisbn><abstract>In this paper, we introduce a new node spreading bio-inspired game (NSBG) combining bio-inspired algorithms and traditional game theory to maximize the area covered by autonomous mobile ad hoc network nodes and to achieve a uniform node distribution while keeping the network connected. NSBG is a distributed and scalable game where each node's selfish actions lead the entire network toward a uniform and stable node distribution without a centralized controller. In NSBG, each mobile node autonomously makes movement decisions based on localized data while the movement probabilities of possible next locations are assigned by a force-based genetic algorithm (FGA). Because FGA takes only into account the current position of the neighboring nodes, our NSBG, combining FGA with traditional and evolutionary game theory, can find even better locations by setting up spatial games among neighbors. NSBG is a good candidate for the node spreading class of applications used in both military and commercial applications. We present a formal analysis of our NSBG to prove that an evolutionary stable state is its convergence point. Simulation experiments demonstrate that NSBG performs well with respect to network area coverage, uniform distribution of mobile nodes, and convergence speed.</abstract><pub>IEEE</pub><doi>10.1109/SARNOF.2011.5876440</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612846811
ispartof 34th IEEE Sarnoff Symposium, 2011, p.1-5
issn
language eng
recordid cdi_ieee_primary_5876440
source IEEE Electronic Library (IEL) Conference Proceedings
subjects bio-inspired algorithm
Force
Game theory
Games
Genetic algorithms
MANETs
Mobile ad hoc networks
Mobile communication
Network topology
node spreading
Topology control
title Game theory based bio-inspired techniques for self-positioning autonomous MANET nodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Game%20theory%20based%20bio-inspired%20techniques%20for%20self-positioning%20autonomous%20MANET%20nodes&rft.btitle=34th%20IEEE%20Sarnoff%20Symposium&rft.au=Kusyk,%20J.&rft.date=2011-05&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781612846811&rft.isbn_list=1612846815&rft_id=info:doi/10.1109/SARNOF.2011.5876440&rft_dat=%3Cieee_6IE%3E5876440%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612846804&rft.eisbn_list=1612846807&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5876440&rfr_iscdi=true