Spectral signatures of point clouds and applications to detection of Alzheimer's Disease through Neuroimaging
We introduce a class of spectral shape signatures constructed from symmetric functions on the eigenfunctions of the Laplacian exponentially weighted by their eigenvalues. Such a construction is motivated by problems that arise in the use of the eigenfunctions for shape comparison, such as indetermin...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1854 |
---|---|
container_issue | |
container_start_page | 1851 |
container_title | |
container_volume | |
creator | Bates, J Pafundi, D Kanel, P Liu, X Mio, W |
description | We introduce a class of spectral shape signatures constructed from symmetric functions on the eigenfunctions of the Laplacian exponentially weighted by their eigenvalues. Such a construction is motivated by problems that arise in the use of the eigenfunctions for shape comparison, such as indeterminacies in the choice of signs and the particular ordering in which the eigenfunctions are presented. The spectral invariants are applied to the analysis of Alzheimer's disease (AD) data collected by the Alzheimer's Disease Neuroimaging Initiative, in particular, to the problem of determining whether the signatures can aid in early detection of AD through morphology and imaging. |
doi_str_mv | 10.1109/ISBI.2011.5872768 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5872768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5872768</ieee_id><sourcerecordid>5872768</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-befe89a964e8f24073daa855f432ee70583ab32207a0a3ece2203a721e67725e3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQNC-JUvoBiItvnFL8rJ1jKa9KFRwK52qbbFKjNI5s51C-niAqMZed0czOSkvIDWdTzll-v1w_LKeCcT7V1ggzsyfkiiuhlOLC6lMy4rnSmVVanP0bxpwfDZMLe0kmMX6xAUYpydSI7NcdFilAQ6OrW0h9wEh9RTvv2kSLxvdlpNCWFLqucQUk59tIk6clpmFxUL_pefO9Q7fHcBfpo4sIEWnaBd_XO_qGffBuD7Vr62tyUUETcXKcY_L5_PSxeM1W7y_LxXyVOW50yrZYoc0hnym0lVDMyBLAal0pKRAN01bCVgrBDDCQWOBAJRjBcWaM0CjH5Pav1yHipgvD-XDYHN8mfwBCDV6Z</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spectral signatures of point clouds and applications to detection of Alzheimer's Disease through Neuroimaging</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bates, J ; Pafundi, D ; Kanel, P ; Liu, X ; Mio, W</creator><creatorcontrib>Bates, J ; Pafundi, D ; Kanel, P ; Liu, X ; Mio, W</creatorcontrib><description>We introduce a class of spectral shape signatures constructed from symmetric functions on the eigenfunctions of the Laplacian exponentially weighted by their eigenvalues. Such a construction is motivated by problems that arise in the use of the eigenfunctions for shape comparison, such as indeterminacies in the choice of signs and the particular ordering in which the eigenfunctions are presented. The spectral invariants are applied to the analysis of Alzheimer's disease (AD) data collected by the Alzheimer's Disease Neuroimaging Initiative, in particular, to the problem of determining whether the signatures can aid in early detection of AD through morphology and imaging.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424441277</identifier><identifier>ISBN: 9781424441273</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424441285</identifier><identifier>EISBN: 9781424441280</identifier><identifier>DOI: 10.1109/ISBI.2011.5872768</identifier><language>eng</language><publisher>IEEE</publisher><subject>ADNI ; Alzheimer's disease ; Eigenvalues and eigenfunctions ; Heating ; Hippocampus ; Laplace equations ; Point-cloud Laplacian ; Shape ; shape analysis ; spectral signatures</subject><ispartof>2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011, p.1851-1854</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5872768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5872768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bates, J</creatorcontrib><creatorcontrib>Pafundi, D</creatorcontrib><creatorcontrib>Kanel, P</creatorcontrib><creatorcontrib>Liu, X</creatorcontrib><creatorcontrib>Mio, W</creatorcontrib><title>Spectral signatures of point clouds and applications to detection of Alzheimer's Disease through Neuroimaging</title><title>2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>We introduce a class of spectral shape signatures constructed from symmetric functions on the eigenfunctions of the Laplacian exponentially weighted by their eigenvalues. Such a construction is motivated by problems that arise in the use of the eigenfunctions for shape comparison, such as indeterminacies in the choice of signs and the particular ordering in which the eigenfunctions are presented. The spectral invariants are applied to the analysis of Alzheimer's disease (AD) data collected by the Alzheimer's Disease Neuroimaging Initiative, in particular, to the problem of determining whether the signatures can aid in early detection of AD through morphology and imaging.</description><subject>ADNI</subject><subject>Alzheimer's disease</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Heating</subject><subject>Hippocampus</subject><subject>Laplace equations</subject><subject>Point-cloud Laplacian</subject><subject>Shape</subject><subject>shape analysis</subject><subject>spectral signatures</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424441277</isbn><isbn>9781424441273</isbn><isbn>1424441285</isbn><isbn>9781424441280</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUMtOwzAQNC-JUvoBiItvnFL8rJ1jKa9KFRwK52qbbFKjNI5s51C-niAqMZed0czOSkvIDWdTzll-v1w_LKeCcT7V1ggzsyfkiiuhlOLC6lMy4rnSmVVanP0bxpwfDZMLe0kmMX6xAUYpydSI7NcdFilAQ6OrW0h9wEh9RTvv2kSLxvdlpNCWFLqucQUk59tIk6clpmFxUL_pefO9Q7fHcBfpo4sIEWnaBd_XO_qGffBuD7Vr62tyUUETcXKcY_L5_PSxeM1W7y_LxXyVOW50yrZYoc0hnym0lVDMyBLAal0pKRAN01bCVgrBDDCQWOBAJRjBcWaM0CjH5Pav1yHipgvD-XDYHN8mfwBCDV6Z</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Bates, J</creator><creator>Pafundi, D</creator><creator>Kanel, P</creator><creator>Liu, X</creator><creator>Mio, W</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>Spectral signatures of point clouds and applications to detection of Alzheimer's Disease through Neuroimaging</title><author>Bates, J ; Pafundi, D ; Kanel, P ; Liu, X ; Mio, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-befe89a964e8f24073daa855f432ee70583ab32207a0a3ece2203a721e67725e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ADNI</topic><topic>Alzheimer's disease</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Heating</topic><topic>Hippocampus</topic><topic>Laplace equations</topic><topic>Point-cloud Laplacian</topic><topic>Shape</topic><topic>shape analysis</topic><topic>spectral signatures</topic><toplevel>online_resources</toplevel><creatorcontrib>Bates, J</creatorcontrib><creatorcontrib>Pafundi, D</creatorcontrib><creatorcontrib>Kanel, P</creatorcontrib><creatorcontrib>Liu, X</creatorcontrib><creatorcontrib>Mio, W</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bates, J</au><au>Pafundi, D</au><au>Kanel, P</au><au>Liu, X</au><au>Mio, W</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spectral signatures of point clouds and applications to detection of Alzheimer's Disease through Neuroimaging</atitle><btitle>2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2011-03</date><risdate>2011</risdate><spage>1851</spage><epage>1854</epage><pages>1851-1854</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424441277</isbn><isbn>9781424441273</isbn><eisbn>1424441285</eisbn><eisbn>9781424441280</eisbn><abstract>We introduce a class of spectral shape signatures constructed from symmetric functions on the eigenfunctions of the Laplacian exponentially weighted by their eigenvalues. Such a construction is motivated by problems that arise in the use of the eigenfunctions for shape comparison, such as indeterminacies in the choice of signs and the particular ordering in which the eigenfunctions are presented. The spectral invariants are applied to the analysis of Alzheimer's disease (AD) data collected by the Alzheimer's Disease Neuroimaging Initiative, in particular, to the problem of determining whether the signatures can aid in early detection of AD through morphology and imaging.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2011.5872768</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011, p.1851-1854 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_5872768 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | ADNI Alzheimer's disease Eigenvalues and eigenfunctions Heating Hippocampus Laplace equations Point-cloud Laplacian Shape shape analysis spectral signatures |
title | Spectral signatures of point clouds and applications to detection of Alzheimer's Disease through Neuroimaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spectral%20signatures%20of%20point%20clouds%20and%20applications%20to%20detection%20of%20Alzheimer's%20Disease%20through%20Neuroimaging&rft.btitle=2011%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Bates,%20J&rft.date=2011-03&rft.spage=1851&rft.epage=1854&rft.pages=1851-1854&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424441277&rft.isbn_list=9781424441273&rft_id=info:doi/10.1109/ISBI.2011.5872768&rft_dat=%3Cieee_6IE%3E5872768%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441285&rft.eisbn_list=9781424441280&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5872768&rfr_iscdi=true |