A swarm tracking approach for stochastic white matter tractography

In this paper, we propose a fast and novel probabilistic fiber tracking method for DTI data using the particle swarm tracking technique, which considers both the local fiber orientation distribution and the global fiber path in collaborative manner. We first construct a global optimization model tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yuanjing Feng, Savadjiev, P, Rathi, Y, Meina Quan, Zhejin Wang, Westin, C F
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue
container_start_page 803
container_title
container_volume
creator Yuanjing Feng
Savadjiev, P
Rathi, Y
Meina Quan
Zhejin Wang
Westin, C F
description In this paper, we propose a fast and novel probabilistic fiber tracking method for DTI data using the particle swarm tracking technique, which considers both the local fiber orientation distribution and the global fiber path in collaborative manner. We first construct a global optimization model that captures both global fiber path and the uncertainties in local fiber orientation. Then, a global fiber tracking algorithm is presented using a novel learning strategy where the probability associated with a fiber is iteratively maximized. Finally, the proposed algorithm is validated and compared to alternative methods using both synthetic and real data.
doi_str_mv 10.1109/ISBI.2011.5872527
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5872527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5872527</ieee_id><sourcerecordid>5872527</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-53025633bd45312d9cda851aafcca03aa7dfb30a235c1ba4977c569a31e9626f3</originalsourceid><addsrcrecordid>eNpFkMtOwzAURM1LopR-AGLjH0jwtX3jeNlWPCJVYgGsqxvHaQKURLalqn8PgkjMZhbnaBbD2A2IHEDYu-plVeVSAORYGonSnLAr0FJrDbLEUzYDqzErNcqzf2DM-QSMleUlW8T4Ln5itFZCz9hqyeOBwp6nQO6j_9pxGscwkOt4OwQe0-A6iql3_ND1yfM9peTDr52GXaCxO16zi5Y-o19MPWdvD_ev66ds8_xYrZebrAeDKUMlJBZK1Y1GBbKxrqESgah1joQiMk1bK0FSoYOatDXGYWFJgbeFLFo1Z7d_u733fjuGfk_huJ2-UN88dE6-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A swarm tracking approach for stochastic white matter tractography</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yuanjing Feng ; Savadjiev, P ; Rathi, Y ; Meina Quan ; Zhejin Wang ; Westin, C F</creator><creatorcontrib>Yuanjing Feng ; Savadjiev, P ; Rathi, Y ; Meina Quan ; Zhejin Wang ; Westin, C F</creatorcontrib><description>In this paper, we propose a fast and novel probabilistic fiber tracking method for DTI data using the particle swarm tracking technique, which considers both the local fiber orientation distribution and the global fiber path in collaborative manner. We first construct a global optimization model that captures both global fiber path and the uncertainties in local fiber orientation. Then, a global fiber tracking algorithm is presented using a novel learning strategy where the probability associated with a fiber is iteratively maximized. Finally, the proposed algorithm is validated and compared to alternative methods using both synthetic and real data.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424441277</identifier><identifier>ISBN: 9781424441273</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424441285</identifier><identifier>EISBN: 9781424441280</identifier><identifier>DOI: 10.1109/ISBI.2011.5872527</identifier><language>eng</language><publisher>IEEE</publisher><subject>Diffusion tensor imaging ; Optical fiber dispersion ; Optical fiber networks ; Optical fiber theory ; Optimization ; probabilistic fiber tracking ; swarm tracking ; Target tracking ; Tensile stress ; tractography</subject><ispartof>2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011, p.803-807</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5872527$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5872527$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuanjing Feng</creatorcontrib><creatorcontrib>Savadjiev, P</creatorcontrib><creatorcontrib>Rathi, Y</creatorcontrib><creatorcontrib>Meina Quan</creatorcontrib><creatorcontrib>Zhejin Wang</creatorcontrib><creatorcontrib>Westin, C F</creatorcontrib><title>A swarm tracking approach for stochastic white matter tractography</title><title>2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>In this paper, we propose a fast and novel probabilistic fiber tracking method for DTI data using the particle swarm tracking technique, which considers both the local fiber orientation distribution and the global fiber path in collaborative manner. We first construct a global optimization model that captures both global fiber path and the uncertainties in local fiber orientation. Then, a global fiber tracking algorithm is presented using a novel learning strategy where the probability associated with a fiber is iteratively maximized. Finally, the proposed algorithm is validated and compared to alternative methods using both synthetic and real data.</description><subject>Diffusion tensor imaging</subject><subject>Optical fiber dispersion</subject><subject>Optical fiber networks</subject><subject>Optical fiber theory</subject><subject>Optimization</subject><subject>probabilistic fiber tracking</subject><subject>swarm tracking</subject><subject>Target tracking</subject><subject>Tensile stress</subject><subject>tractography</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424441277</isbn><isbn>9781424441273</isbn><isbn>1424441285</isbn><isbn>9781424441280</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAURM1LopR-AGLjH0jwtX3jeNlWPCJVYgGsqxvHaQKURLalqn8PgkjMZhbnaBbD2A2IHEDYu-plVeVSAORYGonSnLAr0FJrDbLEUzYDqzErNcqzf2DM-QSMleUlW8T4Ln5itFZCz9hqyeOBwp6nQO6j_9pxGscwkOt4OwQe0-A6iql3_ND1yfM9peTDr52GXaCxO16zi5Y-o19MPWdvD_ev66ds8_xYrZebrAeDKUMlJBZK1Y1GBbKxrqESgah1joQiMk1bK0FSoYOatDXGYWFJgbeFLFo1Z7d_u733fjuGfk_huJ2-UN88dE6-</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Yuanjing Feng</creator><creator>Savadjiev, P</creator><creator>Rathi, Y</creator><creator>Meina Quan</creator><creator>Zhejin Wang</creator><creator>Westin, C F</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>A swarm tracking approach for stochastic white matter tractography</title><author>Yuanjing Feng ; Savadjiev, P ; Rathi, Y ; Meina Quan ; Zhejin Wang ; Westin, C F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-53025633bd45312d9cda851aafcca03aa7dfb30a235c1ba4977c569a31e9626f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Diffusion tensor imaging</topic><topic>Optical fiber dispersion</topic><topic>Optical fiber networks</topic><topic>Optical fiber theory</topic><topic>Optimization</topic><topic>probabilistic fiber tracking</topic><topic>swarm tracking</topic><topic>Target tracking</topic><topic>Tensile stress</topic><topic>tractography</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuanjing Feng</creatorcontrib><creatorcontrib>Savadjiev, P</creatorcontrib><creatorcontrib>Rathi, Y</creatorcontrib><creatorcontrib>Meina Quan</creatorcontrib><creatorcontrib>Zhejin Wang</creatorcontrib><creatorcontrib>Westin, C F</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuanjing Feng</au><au>Savadjiev, P</au><au>Rathi, Y</au><au>Meina Quan</au><au>Zhejin Wang</au><au>Westin, C F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A swarm tracking approach for stochastic white matter tractography</atitle><btitle>2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2011-03</date><risdate>2011</risdate><spage>803</spage><epage>807</epage><pages>803-807</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424441277</isbn><isbn>9781424441273</isbn><eisbn>1424441285</eisbn><eisbn>9781424441280</eisbn><abstract>In this paper, we propose a fast and novel probabilistic fiber tracking method for DTI data using the particle swarm tracking technique, which considers both the local fiber orientation distribution and the global fiber path in collaborative manner. We first construct a global optimization model that captures both global fiber path and the uncertainties in local fiber orientation. Then, a global fiber tracking algorithm is presented using a novel learning strategy where the probability associated with a fiber is iteratively maximized. Finally, the proposed algorithm is validated and compared to alternative methods using both synthetic and real data.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2011.5872527</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011, p.803-807
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_5872527
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Diffusion tensor imaging
Optical fiber dispersion
Optical fiber networks
Optical fiber theory
Optimization
probabilistic fiber tracking
swarm tracking
Target tracking
Tensile stress
tractography
title A swarm tracking approach for stochastic white matter tractography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20swarm%20tracking%20approach%20for%20stochastic%20white%20matter%20tractography&rft.btitle=2011%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Yuanjing%20Feng&rft.date=2011-03&rft.spage=803&rft.epage=807&rft.pages=803-807&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424441277&rft.isbn_list=9781424441273&rft_id=info:doi/10.1109/ISBI.2011.5872527&rft_dat=%3Cieee_6IE%3E5872527%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441285&rft.eisbn_list=9781424441280&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5872527&rfr_iscdi=true