A swarm tracking approach for stochastic white matter tractography
In this paper, we propose a fast and novel probabilistic fiber tracking method for DTI data using the particle swarm tracking technique, which considers both the local fiber orientation distribution and the global fiber path in collaborative manner. We first construct a global optimization model tha...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | |
container_start_page | 803 |
container_title | |
container_volume | |
creator | Yuanjing Feng Savadjiev, P Rathi, Y Meina Quan Zhejin Wang Westin, C F |
description | In this paper, we propose a fast and novel probabilistic fiber tracking method for DTI data using the particle swarm tracking technique, which considers both the local fiber orientation distribution and the global fiber path in collaborative manner. We first construct a global optimization model that captures both global fiber path and the uncertainties in local fiber orientation. Then, a global fiber tracking algorithm is presented using a novel learning strategy where the probability associated with a fiber is iteratively maximized. Finally, the proposed algorithm is validated and compared to alternative methods using both synthetic and real data. |
doi_str_mv | 10.1109/ISBI.2011.5872527 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5872527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5872527</ieee_id><sourcerecordid>5872527</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-53025633bd45312d9cda851aafcca03aa7dfb30a235c1ba4977c569a31e9626f3</originalsourceid><addsrcrecordid>eNpFkMtOwzAURM1LopR-AGLjH0jwtX3jeNlWPCJVYgGsqxvHaQKURLalqn8PgkjMZhbnaBbD2A2IHEDYu-plVeVSAORYGonSnLAr0FJrDbLEUzYDqzErNcqzf2DM-QSMleUlW8T4Ln5itFZCz9hqyeOBwp6nQO6j_9pxGscwkOt4OwQe0-A6iql3_ND1yfM9peTDr52GXaCxO16zi5Y-o19MPWdvD_ev66ds8_xYrZebrAeDKUMlJBZK1Y1GBbKxrqESgah1joQiMk1bK0FSoYOatDXGYWFJgbeFLFo1Z7d_u733fjuGfk_huJ2-UN88dE6-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A swarm tracking approach for stochastic white matter tractography</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yuanjing Feng ; Savadjiev, P ; Rathi, Y ; Meina Quan ; Zhejin Wang ; Westin, C F</creator><creatorcontrib>Yuanjing Feng ; Savadjiev, P ; Rathi, Y ; Meina Quan ; Zhejin Wang ; Westin, C F</creatorcontrib><description>In this paper, we propose a fast and novel probabilistic fiber tracking method for DTI data using the particle swarm tracking technique, which considers both the local fiber orientation distribution and the global fiber path in collaborative manner. We first construct a global optimization model that captures both global fiber path and the uncertainties in local fiber orientation. Then, a global fiber tracking algorithm is presented using a novel learning strategy where the probability associated with a fiber is iteratively maximized. Finally, the proposed algorithm is validated and compared to alternative methods using both synthetic and real data.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424441277</identifier><identifier>ISBN: 9781424441273</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424441285</identifier><identifier>EISBN: 9781424441280</identifier><identifier>DOI: 10.1109/ISBI.2011.5872527</identifier><language>eng</language><publisher>IEEE</publisher><subject>Diffusion tensor imaging ; Optical fiber dispersion ; Optical fiber networks ; Optical fiber theory ; Optimization ; probabilistic fiber tracking ; swarm tracking ; Target tracking ; Tensile stress ; tractography</subject><ispartof>2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011, p.803-807</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5872527$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5872527$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuanjing Feng</creatorcontrib><creatorcontrib>Savadjiev, P</creatorcontrib><creatorcontrib>Rathi, Y</creatorcontrib><creatorcontrib>Meina Quan</creatorcontrib><creatorcontrib>Zhejin Wang</creatorcontrib><creatorcontrib>Westin, C F</creatorcontrib><title>A swarm tracking approach for stochastic white matter tractography</title><title>2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>In this paper, we propose a fast and novel probabilistic fiber tracking method for DTI data using the particle swarm tracking technique, which considers both the local fiber orientation distribution and the global fiber path in collaborative manner. We first construct a global optimization model that captures both global fiber path and the uncertainties in local fiber orientation. Then, a global fiber tracking algorithm is presented using a novel learning strategy where the probability associated with a fiber is iteratively maximized. Finally, the proposed algorithm is validated and compared to alternative methods using both synthetic and real data.</description><subject>Diffusion tensor imaging</subject><subject>Optical fiber dispersion</subject><subject>Optical fiber networks</subject><subject>Optical fiber theory</subject><subject>Optimization</subject><subject>probabilistic fiber tracking</subject><subject>swarm tracking</subject><subject>Target tracking</subject><subject>Tensile stress</subject><subject>tractography</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424441277</isbn><isbn>9781424441273</isbn><isbn>1424441285</isbn><isbn>9781424441280</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAURM1LopR-AGLjH0jwtX3jeNlWPCJVYgGsqxvHaQKURLalqn8PgkjMZhbnaBbD2A2IHEDYu-plVeVSAORYGonSnLAr0FJrDbLEUzYDqzErNcqzf2DM-QSMleUlW8T4Ln5itFZCz9hqyeOBwp6nQO6j_9pxGscwkOt4OwQe0-A6iql3_ND1yfM9peTDr52GXaCxO16zi5Y-o19MPWdvD_ev66ds8_xYrZebrAeDKUMlJBZK1Y1GBbKxrqESgah1joQiMk1bK0FSoYOatDXGYWFJgbeFLFo1Z7d_u733fjuGfk_huJ2-UN88dE6-</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Yuanjing Feng</creator><creator>Savadjiev, P</creator><creator>Rathi, Y</creator><creator>Meina Quan</creator><creator>Zhejin Wang</creator><creator>Westin, C F</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>A swarm tracking approach for stochastic white matter tractography</title><author>Yuanjing Feng ; Savadjiev, P ; Rathi, Y ; Meina Quan ; Zhejin Wang ; Westin, C F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-53025633bd45312d9cda851aafcca03aa7dfb30a235c1ba4977c569a31e9626f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Diffusion tensor imaging</topic><topic>Optical fiber dispersion</topic><topic>Optical fiber networks</topic><topic>Optical fiber theory</topic><topic>Optimization</topic><topic>probabilistic fiber tracking</topic><topic>swarm tracking</topic><topic>Target tracking</topic><topic>Tensile stress</topic><topic>tractography</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuanjing Feng</creatorcontrib><creatorcontrib>Savadjiev, P</creatorcontrib><creatorcontrib>Rathi, Y</creatorcontrib><creatorcontrib>Meina Quan</creatorcontrib><creatorcontrib>Zhejin Wang</creatorcontrib><creatorcontrib>Westin, C F</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuanjing Feng</au><au>Savadjiev, P</au><au>Rathi, Y</au><au>Meina Quan</au><au>Zhejin Wang</au><au>Westin, C F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A swarm tracking approach for stochastic white matter tractography</atitle><btitle>2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2011-03</date><risdate>2011</risdate><spage>803</spage><epage>807</epage><pages>803-807</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424441277</isbn><isbn>9781424441273</isbn><eisbn>1424441285</eisbn><eisbn>9781424441280</eisbn><abstract>In this paper, we propose a fast and novel probabilistic fiber tracking method for DTI data using the particle swarm tracking technique, which considers both the local fiber orientation distribution and the global fiber path in collaborative manner. We first construct a global optimization model that captures both global fiber path and the uncertainties in local fiber orientation. Then, a global fiber tracking algorithm is presented using a novel learning strategy where the probability associated with a fiber is iteratively maximized. Finally, the proposed algorithm is validated and compared to alternative methods using both synthetic and real data.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2011.5872527</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011, p.803-807 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_5872527 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Diffusion tensor imaging Optical fiber dispersion Optical fiber networks Optical fiber theory Optimization probabilistic fiber tracking swarm tracking Target tracking Tensile stress tractography |
title | A swarm tracking approach for stochastic white matter tractography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20swarm%20tracking%20approach%20for%20stochastic%20white%20matter%20tractography&rft.btitle=2011%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Yuanjing%20Feng&rft.date=2011-03&rft.spage=803&rft.epage=807&rft.pages=803-807&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424441277&rft.isbn_list=9781424441273&rft_id=info:doi/10.1109/ISBI.2011.5872527&rft_dat=%3Cieee_6IE%3E5872527%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441285&rft.eisbn_list=9781424441280&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5872527&rfr_iscdi=true |