A physics-based model of the dielectric breakdown in HfO2 for statistical reliability prediction

We present a quantitative physical model describing the current evolution due to the formation of a conductive filament responsible for the HfO 2 dielectric breakdown. By linking the microscopic properties of the stress-generated electrical defects to the local power dissipation and to the correspon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vandelli, L, Padovani, A, Larcher, L, Bersuker, G, Jung Yum, Pavan, P
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page GD.5.4
container_issue
container_start_page GD.5.1
container_title
container_volume
creator Vandelli, L
Padovani, A
Larcher, L
Bersuker, G
Jung Yum
Pavan, P
description We present a quantitative physical model describing the current evolution due to the formation of a conductive filament responsible for the HfO 2 dielectric breakdown. By linking the microscopic properties of the stress-generated electrical defects to the local power dissipation and to the corresponding temperature increase along the conductive path the model reproduces the rapid current increase observed during the breakdown. The model successfully simulates the experimental time-dependent dielectric breakdown distributions measured in HfO 2 MIM capacitors under constant voltage stress, thus providing a statistical reliability prediction capability, which can be extended to other high-k materials, multilayer stacks, resistive memories based on transition metal oxides, etc.
doi_str_mv 10.1109/IRPS.2011.5784582
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5784582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5784582</ieee_id><sourcerecordid>5784582</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-15b1a1060b3348207d24c9e53579369bc46697001b7dd39016128520a77caa333</originalsourceid><addsrcrecordid>eNo1kMtKAzEUQOMLbGs_QNzkB6bem8ckWZaitlCoaPc1r6HRaWeYBKR_r2BdncWBsziE3CPMEME8rt5e32cMEGdSaSE1uyBTozQKJoRBRHVJRmi4rlAbvCLjf8HF9a-QAisFrL4l45w_ARhwXY_Ix5z2-1NOPlfO5hjooQuxpV1Dyz7SkGIbfRmSp26I9it030eajnTZbBhtuoHmYkvKJXnb0iG2ybrUpnKi_RBD8iV1xzty09g2x-mZE7J9ftoultV687JazNdVMlAqlA4tQg2Oc6EZqMCEN1FyqQyvjfOiro0CQKdC4AawRqYlA6uUt5ZzPiEPf9kUY9z1QzrY4bQ7j-I_flpXRQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A physics-based model of the dielectric breakdown in HfO2 for statistical reliability prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vandelli, L ; Padovani, A ; Larcher, L ; Bersuker, G ; Jung Yum ; Pavan, P</creator><creatorcontrib>Vandelli, L ; Padovani, A ; Larcher, L ; Bersuker, G ; Jung Yum ; Pavan, P</creatorcontrib><description>We present a quantitative physical model describing the current evolution due to the formation of a conductive filament responsible for the HfO 2 dielectric breakdown. By linking the microscopic properties of the stress-generated electrical defects to the local power dissipation and to the corresponding temperature increase along the conductive path the model reproduces the rapid current increase observed during the breakdown. The model successfully simulates the experimental time-dependent dielectric breakdown distributions measured in HfO 2 MIM capacitors under constant voltage stress, thus providing a statistical reliability prediction capability, which can be extended to other high-k materials, multilayer stacks, resistive memories based on transition metal oxides, etc.</description><identifier>ISSN: 1541-7026</identifier><identifier>ISBN: 1424491134</identifier><identifier>ISBN: 9781424491131</identifier><identifier>EISSN: 1938-1891</identifier><identifier>EISBN: 9781424491117</identifier><identifier>EISBN: 1424491118</identifier><identifier>EISBN: 1424491126</identifier><identifier>EISBN: 9781424491124</identifier><identifier>DOI: 10.1109/IRPS.2011.5784582</identifier><language>eng</language><publisher>IEEE</publisher><subject>breakdown statistics ; dielectric breakdown ; Dielectrics ; Electric breakdown ; Electron traps ; forming ; HfO 2 ; High K dielectric materials ; high-k ; Logic gates ; Power dissipation ; RRAM ; TDDB ; Tin</subject><ispartof>2011 International Reliability Physics Symposium, 2011, p.GD.5.1-GD.5.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5784582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5784582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vandelli, L</creatorcontrib><creatorcontrib>Padovani, A</creatorcontrib><creatorcontrib>Larcher, L</creatorcontrib><creatorcontrib>Bersuker, G</creatorcontrib><creatorcontrib>Jung Yum</creatorcontrib><creatorcontrib>Pavan, P</creatorcontrib><title>A physics-based model of the dielectric breakdown in HfO2 for statistical reliability prediction</title><title>2011 International Reliability Physics Symposium</title><addtitle>IRPS</addtitle><description>We present a quantitative physical model describing the current evolution due to the formation of a conductive filament responsible for the HfO 2 dielectric breakdown. By linking the microscopic properties of the stress-generated electrical defects to the local power dissipation and to the corresponding temperature increase along the conductive path the model reproduces the rapid current increase observed during the breakdown. The model successfully simulates the experimental time-dependent dielectric breakdown distributions measured in HfO 2 MIM capacitors under constant voltage stress, thus providing a statistical reliability prediction capability, which can be extended to other high-k materials, multilayer stacks, resistive memories based on transition metal oxides, etc.</description><subject>breakdown statistics</subject><subject>dielectric breakdown</subject><subject>Dielectrics</subject><subject>Electric breakdown</subject><subject>Electron traps</subject><subject>forming</subject><subject>HfO 2</subject><subject>High K dielectric materials</subject><subject>high-k</subject><subject>Logic gates</subject><subject>Power dissipation</subject><subject>RRAM</subject><subject>TDDB</subject><subject>Tin</subject><issn>1541-7026</issn><issn>1938-1891</issn><isbn>1424491134</isbn><isbn>9781424491131</isbn><isbn>9781424491117</isbn><isbn>1424491118</isbn><isbn>1424491126</isbn><isbn>9781424491124</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKAzEUQOMLbGs_QNzkB6bem8ckWZaitlCoaPc1r6HRaWeYBKR_r2BdncWBsziE3CPMEME8rt5e32cMEGdSaSE1uyBTozQKJoRBRHVJRmi4rlAbvCLjf8HF9a-QAisFrL4l45w_ARhwXY_Ix5z2-1NOPlfO5hjooQuxpV1Dyz7SkGIbfRmSp26I9it030eajnTZbBhtuoHmYkvKJXnb0iG2ybrUpnKi_RBD8iV1xzty09g2x-mZE7J9ftoultV687JazNdVMlAqlA4tQg2Oc6EZqMCEN1FyqQyvjfOiro0CQKdC4AawRqYlA6uUt5ZzPiEPf9kUY9z1QzrY4bQ7j-I_flpXRQ</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Vandelli, L</creator><creator>Padovani, A</creator><creator>Larcher, L</creator><creator>Bersuker, G</creator><creator>Jung Yum</creator><creator>Pavan, P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201104</creationdate><title>A physics-based model of the dielectric breakdown in HfO2 for statistical reliability prediction</title><author>Vandelli, L ; Padovani, A ; Larcher, L ; Bersuker, G ; Jung Yum ; Pavan, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-15b1a1060b3348207d24c9e53579369bc46697001b7dd39016128520a77caa333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>breakdown statistics</topic><topic>dielectric breakdown</topic><topic>Dielectrics</topic><topic>Electric breakdown</topic><topic>Electron traps</topic><topic>forming</topic><topic>HfO 2</topic><topic>High K dielectric materials</topic><topic>high-k</topic><topic>Logic gates</topic><topic>Power dissipation</topic><topic>RRAM</topic><topic>TDDB</topic><topic>Tin</topic><toplevel>online_resources</toplevel><creatorcontrib>Vandelli, L</creatorcontrib><creatorcontrib>Padovani, A</creatorcontrib><creatorcontrib>Larcher, L</creatorcontrib><creatorcontrib>Bersuker, G</creatorcontrib><creatorcontrib>Jung Yum</creatorcontrib><creatorcontrib>Pavan, P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vandelli, L</au><au>Padovani, A</au><au>Larcher, L</au><au>Bersuker, G</au><au>Jung Yum</au><au>Pavan, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A physics-based model of the dielectric breakdown in HfO2 for statistical reliability prediction</atitle><btitle>2011 International Reliability Physics Symposium</btitle><stitle>IRPS</stitle><date>2011-04</date><risdate>2011</risdate><spage>GD.5.1</spage><epage>GD.5.4</epage><pages>GD.5.1-GD.5.4</pages><issn>1541-7026</issn><eissn>1938-1891</eissn><isbn>1424491134</isbn><isbn>9781424491131</isbn><eisbn>9781424491117</eisbn><eisbn>1424491118</eisbn><eisbn>1424491126</eisbn><eisbn>9781424491124</eisbn><abstract>We present a quantitative physical model describing the current evolution due to the formation of a conductive filament responsible for the HfO 2 dielectric breakdown. By linking the microscopic properties of the stress-generated electrical defects to the local power dissipation and to the corresponding temperature increase along the conductive path the model reproduces the rapid current increase observed during the breakdown. The model successfully simulates the experimental time-dependent dielectric breakdown distributions measured in HfO 2 MIM capacitors under constant voltage stress, thus providing a statistical reliability prediction capability, which can be extended to other high-k materials, multilayer stacks, resistive memories based on transition metal oxides, etc.</abstract><pub>IEEE</pub><doi>10.1109/IRPS.2011.5784582</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1541-7026
ispartof 2011 International Reliability Physics Symposium, 2011, p.GD.5.1-GD.5.4
issn 1541-7026
1938-1891
language eng
recordid cdi_ieee_primary_5784582
source IEEE Electronic Library (IEL) Conference Proceedings
subjects breakdown statistics
dielectric breakdown
Dielectrics
Electric breakdown
Electron traps
forming
HfO 2
High K dielectric materials
high-k
Logic gates
Power dissipation
RRAM
TDDB
Tin
title A physics-based model of the dielectric breakdown in HfO2 for statistical reliability prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20physics-based%20model%20of%20the%20dielectric%20breakdown%20in%20HfO2%20for%20statistical%20reliability%20prediction&rft.btitle=2011%20International%20Reliability%20Physics%20Symposium&rft.au=Vandelli,%20L&rft.date=2011-04&rft.spage=GD.5.1&rft.epage=GD.5.4&rft.pages=GD.5.1-GD.5.4&rft.issn=1541-7026&rft.eissn=1938-1891&rft.isbn=1424491134&rft.isbn_list=9781424491131&rft_id=info:doi/10.1109/IRPS.2011.5784582&rft_dat=%3Cieee_6IE%3E5784582%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424491117&rft.eisbn_list=1424491118&rft.eisbn_list=1424491126&rft.eisbn_list=9781424491124&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5784582&rfr_iscdi=true