A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment
The development of objective speech quality measures generally involves fitting a model to subjective rating data. A typical data set comprises ratings generated by listening tests performed in different languages and across different laboratories. These factors as well as others, such as the sex an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2012-01, Vol.20 (1), p.136-146 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | 1 |
container_start_page | 136 |
container_title | IEEE transactions on audio, speech, and language processing |
container_volume | 20 |
creator | Mossavat, I. Petkov, P. N. Kleijn, W. B. Amft, O. |
description | The development of objective speech quality measures generally involves fitting a model to subjective rating data. A typical data set comprises ratings generated by listening tests performed in different languages and across different laboratories. These factors as well as others, such as the sex and age of the talker, influence the subjective ratings and result in data heterogeneity. We use a linear hierarchical Bayes (HB) structure to account for heterogeneity. To make the structure effective, we develop a variational Bayesian inference for the linear HB structure that approximates not only the posterior over the model parameters, but also the model evidence. Using the approximate model evidence we are able to study and exploit the heterogeneity inducing factors in the Bayesian framework. The new approach yields a simple linear predictor with state-of-the-art predictive performance. Our experiments show that the new method compares favorably with systems based on more complex predictor structures such as ITU-T recommendation P.563, Bayesian MARS, and Gaussian processes. |
doi_str_mv | 10.1109/TASL.2011.2158421 |
format | Article |
fullrecord | <record><control><sourceid>swepub_RIE</sourceid><recordid>TN_cdi_ieee_primary_5783333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5783333</ieee_id><sourcerecordid>oai_DiVA_org_kth_63239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-736b47affb73765d18d430afff64ab45e8a30d405a0f15a47101bf0ce4c0b0603</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNN-xIsWM7TpehPIpUhFALLC3HGbeGNInsVKh_T6JUnc287h2NDkLXlEwoJdP7VbZcTGJC6SSmIuUxPUEjKkQayWnMT481Tc7RRQg_hHCWcDpC3xmeO_Dam40zusQPeg_B6QpnTeNrbTa4rfFbXUDpqjWeQwu-XkMFrt1jV-FlA9BpPna67CdZCBDCFqr2Ep1ZXQa4OuQx-nx-Ws3m0eL95XWWLSLDWNxGkiU5l9raXDKZiIKmBWek623Cdc4FpJqRghOhiaVCc0kJzS0xwA3JSULYGN0Nd8MfNLtcNd5ttd-rWjv16L4yVfu1-m03KmExm3ZyOsiNr0PwYI8GSlQPUvUgVQ9SHUB2ntvB0-jQIbJeV8aFozEWXDLO-1duBp0DgONayJT18Q-GP3zQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment</title><source>IEEE Electronic Library (IEL)</source><creator>Mossavat, I. ; Petkov, P. N. ; Kleijn, W. B. ; Amft, O.</creator><creatorcontrib>Mossavat, I. ; Petkov, P. N. ; Kleijn, W. B. ; Amft, O.</creatorcontrib><description>The development of objective speech quality measures generally involves fitting a model to subjective rating data. A typical data set comprises ratings generated by listening tests performed in different languages and across different laboratories. These factors as well as others, such as the sex and age of the talker, influence the subjective ratings and result in data heterogeneity. We use a linear hierarchical Bayes (HB) structure to account for heterogeneity. To make the structure effective, we develop a variational Bayesian inference for the linear HB structure that approximates not only the posterior over the model parameters, but also the model evidence. Using the approximate model evidence we are able to study and exploit the heterogeneity inducing factors in the Bayesian framework. The new approach yields a simple linear predictor with state-of-the-art predictive performance. Our experiments show that the new method compares favorably with systems based on more complex predictor structures such as ITU-T recommendation P.563, Bayesian MARS, and Gaussian processes.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 1558-7924</identifier><identifier>EISSN: 1558-7924</identifier><identifier>DOI: 10.1109/TASL.2011.2158421</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Bayesian methods ; Computational modeling ; Data models ; Equations ; Exact sciences and technology ; Heterogeneity ; hierarchical Bayesian ; Information, signal and communications theory ; Mathematical model ; multi-task learning ; non-intrusive ; Predictive models ; quality of service ; Signal processing ; single-ended ; Speech ; Speech processing ; speech quality ; Telecommunications and information theory ; variational inference</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2012-01, Vol.20 (1), p.136-146</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-736b47affb73765d18d430afff64ab45e8a30d405a0f15a47101bf0ce4c0b0603</citedby><cites>FETCH-LOGICAL-c332t-736b47affb73765d18d430afff64ab45e8a30d405a0f15a47101bf0ce4c0b0603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5783333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5783333$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25473440$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-63239$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Mossavat, I.</creatorcontrib><creatorcontrib>Petkov, P. N.</creatorcontrib><creatorcontrib>Kleijn, W. B.</creatorcontrib><creatorcontrib>Amft, O.</creatorcontrib><title>A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>The development of objective speech quality measures generally involves fitting a model to subjective rating data. A typical data set comprises ratings generated by listening tests performed in different languages and across different laboratories. These factors as well as others, such as the sex and age of the talker, influence the subjective ratings and result in data heterogeneity. We use a linear hierarchical Bayes (HB) structure to account for heterogeneity. To make the structure effective, we develop a variational Bayesian inference for the linear HB structure that approximates not only the posterior over the model parameters, but also the model evidence. Using the approximate model evidence we are able to study and exploit the heterogeneity inducing factors in the Bayesian framework. The new approach yields a simple linear predictor with state-of-the-art predictive performance. Our experiments show that the new method compares favorably with systems based on more complex predictor structures such as ITU-T recommendation P.563, Bayesian MARS, and Gaussian processes.</description><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Heterogeneity</subject><subject>hierarchical Bayesian</subject><subject>Information, signal and communications theory</subject><subject>Mathematical model</subject><subject>multi-task learning</subject><subject>non-intrusive</subject><subject>Predictive models</subject><subject>quality of service</subject><subject>Signal processing</subject><subject>single-ended</subject><subject>Speech</subject><subject>Speech processing</subject><subject>speech quality</subject><subject>Telecommunications and information theory</subject><subject>variational inference</subject><issn>1558-7916</issn><issn>1558-7924</issn><issn>1558-7924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNN-xIsWM7TpehPIpUhFALLC3HGbeGNInsVKh_T6JUnc287h2NDkLXlEwoJdP7VbZcTGJC6SSmIuUxPUEjKkQayWnMT481Tc7RRQg_hHCWcDpC3xmeO_Dam40zusQPeg_B6QpnTeNrbTa4rfFbXUDpqjWeQwu-XkMFrt1jV-FlA9BpPna67CdZCBDCFqr2Ep1ZXQa4OuQx-nx-Ws3m0eL95XWWLSLDWNxGkiU5l9raXDKZiIKmBWek623Cdc4FpJqRghOhiaVCc0kJzS0xwA3JSULYGN0Nd8MfNLtcNd5ttd-rWjv16L4yVfu1-m03KmExm3ZyOsiNr0PwYI8GSlQPUvUgVQ9SHUB2ntvB0-jQIbJeV8aFozEWXDLO-1duBp0DgONayJT18Q-GP3zQ</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Mossavat, I.</creator><creator>Petkov, P. N.</creator><creator>Kleijn, W. B.</creator><creator>Amft, O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>201201</creationdate><title>A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment</title><author>Mossavat, I. ; Petkov, P. N. ; Kleijn, W. B. ; Amft, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-736b47affb73765d18d430afff64ab45e8a30d405a0f15a47101bf0ce4c0b0603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Heterogeneity</topic><topic>hierarchical Bayesian</topic><topic>Information, signal and communications theory</topic><topic>Mathematical model</topic><topic>multi-task learning</topic><topic>non-intrusive</topic><topic>Predictive models</topic><topic>quality of service</topic><topic>Signal processing</topic><topic>single-ended</topic><topic>Speech</topic><topic>Speech processing</topic><topic>speech quality</topic><topic>Telecommunications and information theory</topic><topic>variational inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mossavat, I.</creatorcontrib><creatorcontrib>Petkov, P. N.</creatorcontrib><creatorcontrib>Kleijn, W. B.</creatorcontrib><creatorcontrib>Amft, O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mossavat, I.</au><au>Petkov, P. N.</au><au>Kleijn, W. B.</au><au>Amft, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2012-01</date><risdate>2012</risdate><volume>20</volume><issue>1</issue><spage>136</spage><epage>146</epage><pages>136-146</pages><issn>1558-7916</issn><issn>1558-7924</issn><eissn>1558-7924</eissn><coden>ITASD8</coden><abstract>The development of objective speech quality measures generally involves fitting a model to subjective rating data. A typical data set comprises ratings generated by listening tests performed in different languages and across different laboratories. These factors as well as others, such as the sex and age of the talker, influence the subjective ratings and result in data heterogeneity. We use a linear hierarchical Bayes (HB) structure to account for heterogeneity. To make the structure effective, we develop a variational Bayesian inference for the linear HB structure that approximates not only the posterior over the model parameters, but also the model evidence. Using the approximate model evidence we are able to study and exploit the heterogeneity inducing factors in the Bayesian framework. The new approach yields a simple linear predictor with state-of-the-art predictive performance. Our experiments show that the new method compares favorably with systems based on more complex predictor structures such as ITU-T recommendation P.563, Bayesian MARS, and Gaussian processes.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2011.2158421</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1558-7916 |
ispartof | IEEE transactions on audio, speech, and language processing, 2012-01, Vol.20 (1), p.136-146 |
issn | 1558-7916 1558-7924 1558-7924 |
language | eng |
recordid | cdi_ieee_primary_5783333 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Bayesian methods Computational modeling Data models Equations Exact sciences and technology Heterogeneity hierarchical Bayesian Information, signal and communications theory Mathematical model multi-task learning non-intrusive Predictive models quality of service Signal processing single-ended Speech Speech processing speech quality Telecommunications and information theory variational inference |
title | A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hierarchical%20Bayesian%20Approach%20to%20Modeling%20Heterogeneity%20in%20Speech%20Quality%20Assessment&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Mossavat,%20I.&rft.date=2012-01&rft.volume=20&rft.issue=1&rft.spage=136&rft.epage=146&rft.pages=136-146&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2011.2158421&rft_dat=%3Cswepub_RIE%3Eoai_DiVA_org_kth_63239%3C/swepub_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5783333&rfr_iscdi=true |