A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment

The development of objective speech quality measures generally involves fitting a model to subjective rating data. A typical data set comprises ratings generated by listening tests performed in different languages and across different laboratories. These factors as well as others, such as the sex an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2012-01, Vol.20 (1), p.136-146
Hauptverfasser: Mossavat, I., Petkov, P. N., Kleijn, W. B., Amft, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 136
container_title IEEE transactions on audio, speech, and language processing
container_volume 20
creator Mossavat, I.
Petkov, P. N.
Kleijn, W. B.
Amft, O.
description The development of objective speech quality measures generally involves fitting a model to subjective rating data. A typical data set comprises ratings generated by listening tests performed in different languages and across different laboratories. These factors as well as others, such as the sex and age of the talker, influence the subjective ratings and result in data heterogeneity. We use a linear hierarchical Bayes (HB) structure to account for heterogeneity. To make the structure effective, we develop a variational Bayesian inference for the linear HB structure that approximates not only the posterior over the model parameters, but also the model evidence. Using the approximate model evidence we are able to study and exploit the heterogeneity inducing factors in the Bayesian framework. The new approach yields a simple linear predictor with state-of-the-art predictive performance. Our experiments show that the new method compares favorably with systems based on more complex predictor structures such as ITU-T recommendation P.563, Bayesian MARS, and Gaussian processes.
doi_str_mv 10.1109/TASL.2011.2158421
format Article
fullrecord <record><control><sourceid>swepub_RIE</sourceid><recordid>TN_cdi_ieee_primary_5783333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5783333</ieee_id><sourcerecordid>oai_DiVA_org_kth_63239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-736b47affb73765d18d430afff64ab45e8a30d405a0f15a47101bf0ce4c0b0603</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNN-xIsWM7TpehPIpUhFALLC3HGbeGNInsVKh_T6JUnc287h2NDkLXlEwoJdP7VbZcTGJC6SSmIuUxPUEjKkQayWnMT481Tc7RRQg_hHCWcDpC3xmeO_Dam40zusQPeg_B6QpnTeNrbTa4rfFbXUDpqjWeQwu-XkMFrt1jV-FlA9BpPna67CdZCBDCFqr2Ep1ZXQa4OuQx-nx-Ws3m0eL95XWWLSLDWNxGkiU5l9raXDKZiIKmBWek623Cdc4FpJqRghOhiaVCc0kJzS0xwA3JSULYGN0Nd8MfNLtcNd5ttd-rWjv16L4yVfu1-m03KmExm3ZyOsiNr0PwYI8GSlQPUvUgVQ9SHUB2ntvB0-jQIbJeV8aFozEWXDLO-1duBp0DgONayJT18Q-GP3zQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment</title><source>IEEE Electronic Library (IEL)</source><creator>Mossavat, I. ; Petkov, P. N. ; Kleijn, W. B. ; Amft, O.</creator><creatorcontrib>Mossavat, I. ; Petkov, P. N. ; Kleijn, W. B. ; Amft, O.</creatorcontrib><description>The development of objective speech quality measures generally involves fitting a model to subjective rating data. A typical data set comprises ratings generated by listening tests performed in different languages and across different laboratories. These factors as well as others, such as the sex and age of the talker, influence the subjective ratings and result in data heterogeneity. We use a linear hierarchical Bayes (HB) structure to account for heterogeneity. To make the structure effective, we develop a variational Bayesian inference for the linear HB structure that approximates not only the posterior over the model parameters, but also the model evidence. Using the approximate model evidence we are able to study and exploit the heterogeneity inducing factors in the Bayesian framework. The new approach yields a simple linear predictor with state-of-the-art predictive performance. Our experiments show that the new method compares favorably with systems based on more complex predictor structures such as ITU-T recommendation P.563, Bayesian MARS, and Gaussian processes.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 1558-7924</identifier><identifier>EISSN: 1558-7924</identifier><identifier>DOI: 10.1109/TASL.2011.2158421</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Bayesian methods ; Computational modeling ; Data models ; Equations ; Exact sciences and technology ; Heterogeneity ; hierarchical Bayesian ; Information, signal and communications theory ; Mathematical model ; multi-task learning ; non-intrusive ; Predictive models ; quality of service ; Signal processing ; single-ended ; Speech ; Speech processing ; speech quality ; Telecommunications and information theory ; variational inference</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2012-01, Vol.20 (1), p.136-146</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-736b47affb73765d18d430afff64ab45e8a30d405a0f15a47101bf0ce4c0b0603</citedby><cites>FETCH-LOGICAL-c332t-736b47affb73765d18d430afff64ab45e8a30d405a0f15a47101bf0ce4c0b0603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5783333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5783333$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25473440$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-63239$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Mossavat, I.</creatorcontrib><creatorcontrib>Petkov, P. N.</creatorcontrib><creatorcontrib>Kleijn, W. B.</creatorcontrib><creatorcontrib>Amft, O.</creatorcontrib><title>A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>The development of objective speech quality measures generally involves fitting a model to subjective rating data. A typical data set comprises ratings generated by listening tests performed in different languages and across different laboratories. These factors as well as others, such as the sex and age of the talker, influence the subjective ratings and result in data heterogeneity. We use a linear hierarchical Bayes (HB) structure to account for heterogeneity. To make the structure effective, we develop a variational Bayesian inference for the linear HB structure that approximates not only the posterior over the model parameters, but also the model evidence. Using the approximate model evidence we are able to study and exploit the heterogeneity inducing factors in the Bayesian framework. The new approach yields a simple linear predictor with state-of-the-art predictive performance. Our experiments show that the new method compares favorably with systems based on more complex predictor structures such as ITU-T recommendation P.563, Bayesian MARS, and Gaussian processes.</description><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Heterogeneity</subject><subject>hierarchical Bayesian</subject><subject>Information, signal and communications theory</subject><subject>Mathematical model</subject><subject>multi-task learning</subject><subject>non-intrusive</subject><subject>Predictive models</subject><subject>quality of service</subject><subject>Signal processing</subject><subject>single-ended</subject><subject>Speech</subject><subject>Speech processing</subject><subject>speech quality</subject><subject>Telecommunications and information theory</subject><subject>variational inference</subject><issn>1558-7916</issn><issn>1558-7924</issn><issn>1558-7924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNN-xIsWM7TpehPIpUhFALLC3HGbeGNInsVKh_T6JUnc287h2NDkLXlEwoJdP7VbZcTGJC6SSmIuUxPUEjKkQayWnMT481Tc7RRQg_hHCWcDpC3xmeO_Dam40zusQPeg_B6QpnTeNrbTa4rfFbXUDpqjWeQwu-XkMFrt1jV-FlA9BpPna67CdZCBDCFqr2Ep1ZXQa4OuQx-nx-Ws3m0eL95XWWLSLDWNxGkiU5l9raXDKZiIKmBWek623Cdc4FpJqRghOhiaVCc0kJzS0xwA3JSULYGN0Nd8MfNLtcNd5ttd-rWjv16L4yVfu1-m03KmExm3ZyOsiNr0PwYI8GSlQPUvUgVQ9SHUB2ntvB0-jQIbJeV8aFozEWXDLO-1duBp0DgONayJT18Q-GP3zQ</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Mossavat, I.</creator><creator>Petkov, P. N.</creator><creator>Kleijn, W. B.</creator><creator>Amft, O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>201201</creationdate><title>A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment</title><author>Mossavat, I. ; Petkov, P. N. ; Kleijn, W. B. ; Amft, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-736b47affb73765d18d430afff64ab45e8a30d405a0f15a47101bf0ce4c0b0603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Heterogeneity</topic><topic>hierarchical Bayesian</topic><topic>Information, signal and communications theory</topic><topic>Mathematical model</topic><topic>multi-task learning</topic><topic>non-intrusive</topic><topic>Predictive models</topic><topic>quality of service</topic><topic>Signal processing</topic><topic>single-ended</topic><topic>Speech</topic><topic>Speech processing</topic><topic>speech quality</topic><topic>Telecommunications and information theory</topic><topic>variational inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mossavat, I.</creatorcontrib><creatorcontrib>Petkov, P. N.</creatorcontrib><creatorcontrib>Kleijn, W. B.</creatorcontrib><creatorcontrib>Amft, O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mossavat, I.</au><au>Petkov, P. N.</au><au>Kleijn, W. B.</au><au>Amft, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2012-01</date><risdate>2012</risdate><volume>20</volume><issue>1</issue><spage>136</spage><epage>146</epage><pages>136-146</pages><issn>1558-7916</issn><issn>1558-7924</issn><eissn>1558-7924</eissn><coden>ITASD8</coden><abstract>The development of objective speech quality measures generally involves fitting a model to subjective rating data. A typical data set comprises ratings generated by listening tests performed in different languages and across different laboratories. These factors as well as others, such as the sex and age of the talker, influence the subjective ratings and result in data heterogeneity. We use a linear hierarchical Bayes (HB) structure to account for heterogeneity. To make the structure effective, we develop a variational Bayesian inference for the linear HB structure that approximates not only the posterior over the model parameters, but also the model evidence. Using the approximate model evidence we are able to study and exploit the heterogeneity inducing factors in the Bayesian framework. The new approach yields a simple linear predictor with state-of-the-art predictive performance. Our experiments show that the new method compares favorably with systems based on more complex predictor structures such as ITU-T recommendation P.563, Bayesian MARS, and Gaussian processes.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2011.2158421</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1558-7916
ispartof IEEE transactions on audio, speech, and language processing, 2012-01, Vol.20 (1), p.136-146
issn 1558-7916
1558-7924
1558-7924
language eng
recordid cdi_ieee_primary_5783333
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bayesian methods
Computational modeling
Data models
Equations
Exact sciences and technology
Heterogeneity
hierarchical Bayesian
Information, signal and communications theory
Mathematical model
multi-task learning
non-intrusive
Predictive models
quality of service
Signal processing
single-ended
Speech
Speech processing
speech quality
Telecommunications and information theory
variational inference
title A Hierarchical Bayesian Approach to Modeling Heterogeneity in Speech Quality Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hierarchical%20Bayesian%20Approach%20to%20Modeling%20Heterogeneity%20in%20Speech%20Quality%20Assessment&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Mossavat,%20I.&rft.date=2012-01&rft.volume=20&rft.issue=1&rft.spage=136&rft.epage=146&rft.pages=136-146&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2011.2158421&rft_dat=%3Cswepub_RIE%3Eoai_DiVA_org_kth_63239%3C/swepub_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5783333&rfr_iscdi=true