A parametric study of the Double Exponential algorithm utilized in weakly singular integrals
The Double Exponential (DE) quadrature rule is modified in order to efficiently integrate the observation domain of the 4-D weakly singular integrals arising in Mixed Potential Integral Equation (MPIE) formulations. Although, the original DE rule already guarantees numerically exact results, it resu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2151 |
---|---|
container_issue | |
container_start_page | 2147 |
container_title | |
container_volume | |
creator | Koufogiannis, I D Polimeridis, A G Mattes, M Mosig, J R |
description | The Double Exponential (DE) quadrature rule is modified in order to efficiently integrate the observation domain of the 4-D weakly singular integrals arising in Mixed Potential Integral Equation (MPIE) formulations. Although, the original DE rule already guarantees numerically exact results, it results in poor convergence when compared to widely used interpolatory quadratures like Gauss Legendre (GL), in the cases in which only a few sampling points are considered. The proposed modification, based on the parametrization of the DE transformation, overcomes this weakness: it achieves higher accuracy for a small number of sampling points without additional computational effort while for a large number of evaluation points the behavior of the original DE is recovered. Furthermore, the universality of the proposed technique is outlined, demonstrating that it is satisfactorily applicable to a vast variety of source and observation domains with different geometrical characteristics. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5781996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5781996</ieee_id><sourcerecordid>5781996</sourcerecordid><originalsourceid>FETCH-ieee_primary_57819963</originalsourceid><addsrcrecordid>eNp9jktuwjAURY0AqQGygk7eBiI5jhM7Q9RSdQEMkZAhL-GB85HtCNLVN4OOeyZHOndyF2yjtRZccCWLJYtLpVOZK8VFztMVi0RayCTLpHhjsfd3PlMIpYWM2GkPg3GmxeDoCj6M1QR9DeGG8NmPF4tweA19h10gY8HYpncUbi2MgSz9YAXUwRPNw07gqWtGa9ycAjbOWL9j63oWxn_esvevw_HjOyFEPA-OWuOmcz6_Lcsi-3_9BbtfQw8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A parametric study of the Double Exponential algorithm utilized in weakly singular integrals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Koufogiannis, I D ; Polimeridis, A G ; Mattes, M ; Mosig, J R</creator><creatorcontrib>Koufogiannis, I D ; Polimeridis, A G ; Mattes, M ; Mosig, J R</creatorcontrib><description>The Double Exponential (DE) quadrature rule is modified in order to efficiently integrate the observation domain of the 4-D weakly singular integrals arising in Mixed Potential Integral Equation (MPIE) formulations. Although, the original DE rule already guarantees numerically exact results, it results in poor convergence when compared to widely used interpolatory quadratures like Gauss Legendre (GL), in the cases in which only a few sampling points are considered. The proposed modification, based on the parametrization of the DE transformation, overcomes this weakness: it achieves higher accuracy for a small number of sampling points without additional computational effort while for a large number of evaluation points the behavior of the original DE is recovered. Furthermore, the universality of the proposed technique is outlined, demonstrating that it is satisfactorily applicable to a vast variety of source and observation domains with different geometrical characteristics.</description><identifier>ISSN: 2164-3342</identifier><identifier>ISBN: 9781457702501</identifier><identifier>ISBN: 1457702509</identifier><identifier>EISBN: 8882020746</identifier><identifier>EISBN: 9788882020743</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Antennas ; Convergence ; Integral equations ; Moment methods ; Q factor</subject><ispartof>Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2011, p.2147-2151</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5781996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5781996$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koufogiannis, I D</creatorcontrib><creatorcontrib>Polimeridis, A G</creatorcontrib><creatorcontrib>Mattes, M</creatorcontrib><creatorcontrib>Mosig, J R</creatorcontrib><title>A parametric study of the Double Exponential algorithm utilized in weakly singular integrals</title><title>Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP)</title><addtitle>EUCAP</addtitle><description>The Double Exponential (DE) quadrature rule is modified in order to efficiently integrate the observation domain of the 4-D weakly singular integrals arising in Mixed Potential Integral Equation (MPIE) formulations. Although, the original DE rule already guarantees numerically exact results, it results in poor convergence when compared to widely used interpolatory quadratures like Gauss Legendre (GL), in the cases in which only a few sampling points are considered. The proposed modification, based on the parametrization of the DE transformation, overcomes this weakness: it achieves higher accuracy for a small number of sampling points without additional computational effort while for a large number of evaluation points the behavior of the original DE is recovered. Furthermore, the universality of the proposed technique is outlined, demonstrating that it is satisfactorily applicable to a vast variety of source and observation domains with different geometrical characteristics.</description><subject>Accuracy</subject><subject>Antennas</subject><subject>Convergence</subject><subject>Integral equations</subject><subject>Moment methods</subject><subject>Q factor</subject><issn>2164-3342</issn><isbn>9781457702501</isbn><isbn>1457702509</isbn><isbn>8882020746</isbn><isbn>9788882020743</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jktuwjAURY0AqQGygk7eBiI5jhM7Q9RSdQEMkZAhL-GB85HtCNLVN4OOeyZHOndyF2yjtRZccCWLJYtLpVOZK8VFztMVi0RayCTLpHhjsfd3PlMIpYWM2GkPg3GmxeDoCj6M1QR9DeGG8NmPF4tweA19h10gY8HYpncUbi2MgSz9YAXUwRPNw07gqWtGa9ycAjbOWL9j63oWxn_esvevw_HjOyFEPA-OWuOmcz6_Lcsi-3_9BbtfQw8</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Koufogiannis, I D</creator><creator>Polimeridis, A G</creator><creator>Mattes, M</creator><creator>Mosig, J R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>A parametric study of the Double Exponential algorithm utilized in weakly singular integrals</title><author>Koufogiannis, I D ; Polimeridis, A G ; Mattes, M ; Mosig, J R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_57819963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Antennas</topic><topic>Convergence</topic><topic>Integral equations</topic><topic>Moment methods</topic><topic>Q factor</topic><toplevel>online_resources</toplevel><creatorcontrib>Koufogiannis, I D</creatorcontrib><creatorcontrib>Polimeridis, A G</creatorcontrib><creatorcontrib>Mattes, M</creatorcontrib><creatorcontrib>Mosig, J R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koufogiannis, I D</au><au>Polimeridis, A G</au><au>Mattes, M</au><au>Mosig, J R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A parametric study of the Double Exponential algorithm utilized in weakly singular integrals</atitle><btitle>Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP)</btitle><stitle>EUCAP</stitle><date>2011-04</date><risdate>2011</risdate><spage>2147</spage><epage>2151</epage><pages>2147-2151</pages><issn>2164-3342</issn><isbn>9781457702501</isbn><isbn>1457702509</isbn><eisbn>8882020746</eisbn><eisbn>9788882020743</eisbn><abstract>The Double Exponential (DE) quadrature rule is modified in order to efficiently integrate the observation domain of the 4-D weakly singular integrals arising in Mixed Potential Integral Equation (MPIE) formulations. Although, the original DE rule already guarantees numerically exact results, it results in poor convergence when compared to widely used interpolatory quadratures like Gauss Legendre (GL), in the cases in which only a few sampling points are considered. The proposed modification, based on the parametrization of the DE transformation, overcomes this weakness: it achieves higher accuracy for a small number of sampling points without additional computational effort while for a large number of evaluation points the behavior of the original DE is recovered. Furthermore, the universality of the proposed technique is outlined, demonstrating that it is satisfactorily applicable to a vast variety of source and observation domains with different geometrical characteristics.</abstract><pub>IEEE</pub></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-3342 |
ispartof | Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2011, p.2147-2151 |
issn | 2164-3342 |
language | eng |
recordid | cdi_ieee_primary_5781996 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Antennas Convergence Integral equations Moment methods Q factor |
title | A parametric study of the Double Exponential algorithm utilized in weakly singular integrals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20parametric%20study%20of%20the%20Double%20Exponential%20algorithm%20utilized%20in%20weakly%20singular%20integrals&rft.btitle=Proceedings%20of%20the%205th%20European%20Conference%20on%20Antennas%20and%20Propagation%20(EUCAP)&rft.au=Koufogiannis,%20I%20D&rft.date=2011-04&rft.spage=2147&rft.epage=2151&rft.pages=2147-2151&rft.issn=2164-3342&rft.isbn=9781457702501&rft.isbn_list=1457702509&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5781996%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=8882020746&rft.eisbn_list=9788882020743&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5781996&rfr_iscdi=true |