Extracting solar cell model parameters based on chaos particle swarm algorithm

Utilizing the numerical analysis and optimization method for extracting solar cells model parameters, one recurrent issue refers to the difficulty in initializing the parameters. Moreover, those methods using solar cells exponential model are sensible to small changes in the data measured. A chaotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huang Wei, Jiang Cong, Xue Lingyun, Song Deyun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue
container_start_page 398
container_title
container_volume
creator Huang Wei
Jiang Cong
Xue Lingyun
Song Deyun
description Utilizing the numerical analysis and optimization method for extracting solar cells model parameters, one recurrent issue refers to the difficulty in initializing the parameters. Moreover, those methods using solar cells exponential model are sensible to small changes in the data measured. A chaotic particle swarm optimization algorithm (CPSO) was presented for extracting solar cell model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by introducing a chaos search. The CPSO searched for optimal parameters without strict limitation on the search ranges. The procedure is illustrated by applying it to parameters extraction using the current-voltage data measured from a silicon cell and a solar module. The results demonstrate that the method can reduce the influence of experimental data measurement accuracy, and the statistical analysis data of fitting (I-V) characteristics curves are better than that of other published methods.
doi_str_mv 10.1109/ICEICE.2011.5777246
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5777246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5777246</ieee_id><sourcerecordid>5777246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-d5dbaf59052822b394ac994f693099963badf0c792dde1d197de1d7959f25f4e3</originalsourceid><addsrcrecordid>eNpFj9tKAzEYhCMiqLVP0Ju8wK45bdL_UpZVC0Vv9Lr8m0O7ku2WJKC-vS0WOgx8DAMDQ8iCs5pzBo-rtju6FozzujHGCKWvyD1XQqklk6CvL0HzWzLP-YsdpTVww-7IW_dTEtoy7Lc0TxETtT5GOk7OR3rAhKMvPmXaY_aOTntqdzjlU1MGGz3N35hGinE7paHsxgdyEzBmPz9zRj6fu4_2tVq_v6zap3VluWKlco3rMTTAGrEUopeg0AKooEEyANCyRxeYNSCc89xxMCcYaCCIJigvZ2Txvzt47zeHNIyYfjfn__IPushP1g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extracting solar cell model parameters based on chaos particle swarm algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huang Wei ; Jiang Cong ; Xue Lingyun ; Song Deyun</creator><creatorcontrib>Huang Wei ; Jiang Cong ; Xue Lingyun ; Song Deyun</creatorcontrib><description>Utilizing the numerical analysis and optimization method for extracting solar cells model parameters, one recurrent issue refers to the difficulty in initializing the parameters. Moreover, those methods using solar cells exponential model are sensible to small changes in the data measured. A chaotic particle swarm optimization algorithm (CPSO) was presented for extracting solar cell model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by introducing a chaos search. The CPSO searched for optimal parameters without strict limitation on the search ranges. The procedure is illustrated by applying it to parameters extraction using the current-voltage data measured from a silicon cell and a solar module. The results demonstrate that the method can reduce the influence of experimental data measurement accuracy, and the statistical analysis data of fitting (I-V) characteristics curves are better than that of other published methods.</description><identifier>ISBN: 1424480361</identifier><identifier>ISBN: 9781424480364</identifier><identifier>EISBN: 1424480396</identifier><identifier>EISBN: 9781424480395</identifier><identifier>EISBN: 1424480388</identifier><identifier>EISBN: 9781424480388</identifier><identifier>DOI: 10.1109/ICEICE.2011.5777246</identifier><language>eng</language><publisher>IEEE</publisher><subject>chaotic search ; Current measurement ; Equations ; Fitting ; Mathematical model ; Optimization ; parameter extraction ; Particle swarm optimization ; Photovoltaic cells ; solar cells model</subject><ispartof>2011 International Conference on Electric Information and Control Engineering, 2011, p.398-402</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-d5dbaf59052822b394ac994f693099963badf0c792dde1d197de1d7959f25f4e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5777246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5777246$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang Wei</creatorcontrib><creatorcontrib>Jiang Cong</creatorcontrib><creatorcontrib>Xue Lingyun</creatorcontrib><creatorcontrib>Song Deyun</creatorcontrib><title>Extracting solar cell model parameters based on chaos particle swarm algorithm</title><title>2011 International Conference on Electric Information and Control Engineering</title><addtitle>ICEICE</addtitle><description>Utilizing the numerical analysis and optimization method for extracting solar cells model parameters, one recurrent issue refers to the difficulty in initializing the parameters. Moreover, those methods using solar cells exponential model are sensible to small changes in the data measured. A chaotic particle swarm optimization algorithm (CPSO) was presented for extracting solar cell model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by introducing a chaos search. The CPSO searched for optimal parameters without strict limitation on the search ranges. The procedure is illustrated by applying it to parameters extraction using the current-voltage data measured from a silicon cell and a solar module. The results demonstrate that the method can reduce the influence of experimental data measurement accuracy, and the statistical analysis data of fitting (I-V) characteristics curves are better than that of other published methods.</description><subject>chaotic search</subject><subject>Current measurement</subject><subject>Equations</subject><subject>Fitting</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>parameter extraction</subject><subject>Particle swarm optimization</subject><subject>Photovoltaic cells</subject><subject>solar cells model</subject><isbn>1424480361</isbn><isbn>9781424480364</isbn><isbn>1424480396</isbn><isbn>9781424480395</isbn><isbn>1424480388</isbn><isbn>9781424480388</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj9tKAzEYhCMiqLVP0Ju8wK45bdL_UpZVC0Vv9Lr8m0O7ku2WJKC-vS0WOgx8DAMDQ8iCs5pzBo-rtju6FozzujHGCKWvyD1XQqklk6CvL0HzWzLP-YsdpTVww-7IW_dTEtoy7Lc0TxETtT5GOk7OR3rAhKMvPmXaY_aOTntqdzjlU1MGGz3N35hGinE7paHsxgdyEzBmPz9zRj6fu4_2tVq_v6zap3VluWKlco3rMTTAGrEUopeg0AKooEEyANCyRxeYNSCc89xxMCcYaCCIJigvZ2Txvzt47zeHNIyYfjfn__IPushP1g</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Huang Wei</creator><creator>Jiang Cong</creator><creator>Xue Lingyun</creator><creator>Song Deyun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Extracting solar cell model parameters based on chaos particle swarm algorithm</title><author>Huang Wei ; Jiang Cong ; Xue Lingyun ; Song Deyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-d5dbaf59052822b394ac994f693099963badf0c792dde1d197de1d7959f25f4e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>chaotic search</topic><topic>Current measurement</topic><topic>Equations</topic><topic>Fitting</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>parameter extraction</topic><topic>Particle swarm optimization</topic><topic>Photovoltaic cells</topic><topic>solar cells model</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang Wei</creatorcontrib><creatorcontrib>Jiang Cong</creatorcontrib><creatorcontrib>Xue Lingyun</creatorcontrib><creatorcontrib>Song Deyun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang Wei</au><au>Jiang Cong</au><au>Xue Lingyun</au><au>Song Deyun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extracting solar cell model parameters based on chaos particle swarm algorithm</atitle><btitle>2011 International Conference on Electric Information and Control Engineering</btitle><stitle>ICEICE</stitle><date>2011-04</date><risdate>2011</risdate><spage>398</spage><epage>402</epage><pages>398-402</pages><isbn>1424480361</isbn><isbn>9781424480364</isbn><eisbn>1424480396</eisbn><eisbn>9781424480395</eisbn><eisbn>1424480388</eisbn><eisbn>9781424480388</eisbn><abstract>Utilizing the numerical analysis and optimization method for extracting solar cells model parameters, one recurrent issue refers to the difficulty in initializing the parameters. Moreover, those methods using solar cells exponential model are sensible to small changes in the data measured. A chaotic particle swarm optimization algorithm (CPSO) was presented for extracting solar cell model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by introducing a chaos search. The CPSO searched for optimal parameters without strict limitation on the search ranges. The procedure is illustrated by applying it to parameters extraction using the current-voltage data measured from a silicon cell and a solar module. The results demonstrate that the method can reduce the influence of experimental data measurement accuracy, and the statistical analysis data of fitting (I-V) characteristics curves are better than that of other published methods.</abstract><pub>IEEE</pub><doi>10.1109/ICEICE.2011.5777246</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424480361
ispartof 2011 International Conference on Electric Information and Control Engineering, 2011, p.398-402
issn
language eng
recordid cdi_ieee_primary_5777246
source IEEE Electronic Library (IEL) Conference Proceedings
subjects chaotic search
Current measurement
Equations
Fitting
Mathematical model
Optimization
parameter extraction
Particle swarm optimization
Photovoltaic cells
solar cells model
title Extracting solar cell model parameters based on chaos particle swarm algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extracting%20solar%20cell%20model%20parameters%20based%20on%20chaos%20particle%20swarm%20algorithm&rft.btitle=2011%20International%20Conference%20on%20Electric%20Information%20and%20Control%20Engineering&rft.au=Huang%20Wei&rft.date=2011-04&rft.spage=398&rft.epage=402&rft.pages=398-402&rft.isbn=1424480361&rft.isbn_list=9781424480364&rft_id=info:doi/10.1109/ICEICE.2011.5777246&rft_dat=%3Cieee_6IE%3E5777246%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424480396&rft.eisbn_list=9781424480395&rft.eisbn_list=1424480388&rft.eisbn_list=9781424480388&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5777246&rfr_iscdi=true