Supply-Voltage Scaling Close to the Fundamental Limit Under Process Variations in Nanometer Technologies

The fundamental limit on the minimum allowable supply voltage of a complementary metal-oxide-semiconductor (CMOS) logic gate for binary signal discrimination is V dd, min ≅ 2( ln 2) kT / q . With the theoretical analysis of our proposed circuit technique, we demonstrate an ultralow-voltage operation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2011-08, Vol.58 (8), p.2808-2813
1. Verfasser: HWANG, Myeong-Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2813
container_issue 8
container_start_page 2808
container_title IEEE transactions on electron devices
container_volume 58
creator HWANG, Myeong-Eun
description The fundamental limit on the minimum allowable supply voltage of a complementary metal-oxide-semiconductor (CMOS) logic gate for binary signal discrimination is V dd, min ≅ 2( ln 2) kT / q . With the theoretical analysis of our proposed circuit technique, we demonstrate an ultralow-voltage operation with two 1000-stage inverter chains fabricated in 130- and 65-nm technologies, which can work all the way down to a supply voltage of 50 and 60 mV (with output swings of 42 and 43 mV), respectively, and are close to the fundamental limit of logic operation. For the first time, we present a measured minimum dynamic-switching energy of 21.3 aJ/cycle. This is accomplished by modulating the effective β-ratio to balance the p-channel and n-channel MOS transistors in strength, enabling the operation of standard CMOS logic at ultralow voltages. We also discuss 41-stage ring oscillators, which clearly show the existence of different optimal β-ratios in different regions of operation in terms of performance and robustness under process variations.
doi_str_mv 10.1109/TED.2011.2151257
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5776670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5776670</ieee_id><sourcerecordid>919919195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-2d083e19d7da57b0173a7271b112233d995f25f9515c5f788c78769b2199486b3</originalsourceid><addsrcrecordid>eNpdkEGLFDEQRoMoOK7eBS9BEE89ppJOJznKuKvCoMLO7jVk0umZLOlkTNKH_fdmmWEPUoei-F4VxUPoPZA1AFFfdtff1pQArClwoFy8QCvgXHRq6IeXaEUIyE4xyV6jN6U8tHHoe7pCx9vldAqP3X0K1RwcvrUm-HjAm5CKwzXhenT4ZomjmV2sJuCtn33Fd3F0Gf_JybpS8L3J3lSfYsE-4l8mptnVlu-cPcYU0sG78ha9mkwo7t2lX6G7m-vd5ke3_f395-brtrM9yNrRkUjmQI1iNFzsCQhmBBWwB6CUsVEpPlE-KQ7c8klIaYUUg9pTUKqXw55doc_nu6ec_i6uVD37Yl0IJrq0FK0aCK14Iz_-Rz6kJcf2nJZCEUYYFw0iZ8jmVEp2kz5lP5v8qIHoJ_G6iddP4vVFfFv5dLlrSrM5ZROtL897tO-BS9437sOZ886555gLMQyCsH_qzIpn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879030357</pqid></control><display><type>article</type><title>Supply-Voltage Scaling Close to the Fundamental Limit Under Process Variations in Nanometer Technologies</title><source>IEEE Electronic Library (IEL)</source><creator>HWANG, Myeong-Eun</creator><creatorcontrib>HWANG, Myeong-Eun</creatorcontrib><description>The fundamental limit on the minimum allowable supply voltage of a complementary metal-oxide-semiconductor (CMOS) logic gate for binary signal discrimination is V dd, min ≅ 2( ln 2) kT / q . With the theoretical analysis of our proposed circuit technique, we demonstrate an ultralow-voltage operation with two 1000-stage inverter chains fabricated in 130- and 65-nm technologies, which can work all the way down to a supply voltage of 50 and 60 mV (with output swings of 42 and 43 mV), respectively, and are close to the fundamental limit of logic operation. For the first time, we present a measured minimum dynamic-switching energy of 21.3 aJ/cycle. This is accomplished by modulating the effective β-ratio to balance the p-channel and n-channel MOS transistors in strength, enabling the operation of standard CMOS logic at ultralow voltages. We also discuss 41-stage ring oscillators, which clearly show the existence of different optimal β-ratios in different regions of operation in terms of performance and robustness under process variations.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2151257</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; beta -ratio ; Circuit properties ; CMOS ; Design. Technologies. Operation analysis. Testing ; Devices ; Digital circuits ; Dynamic voltage scaling (DVS) ; Electric potential ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; fundamental limit ; Integrated circuits ; Inverters ; Logic ; minimum supply voltage ; MOSFETs ; Noise ; noise margin ; Oscillators ; Robustness ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; subthreshold logic ; Swing ; Threshold voltage ; Transistors ; Voltage ; Voltage control</subject><ispartof>IEEE transactions on electron devices, 2011-08, Vol.58 (8), p.2808-2813</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-2d083e19d7da57b0173a7271b112233d995f25f9515c5f788c78769b2199486b3</citedby><cites>FETCH-LOGICAL-c418t-2d083e19d7da57b0173a7271b112233d995f25f9515c5f788c78769b2199486b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5776670$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5776670$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24415854$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HWANG, Myeong-Eun</creatorcontrib><title>Supply-Voltage Scaling Close to the Fundamental Limit Under Process Variations in Nanometer Technologies</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The fundamental limit on the minimum allowable supply voltage of a complementary metal-oxide-semiconductor (CMOS) logic gate for binary signal discrimination is V dd, min ≅ 2( ln 2) kT / q . With the theoretical analysis of our proposed circuit technique, we demonstrate an ultralow-voltage operation with two 1000-stage inverter chains fabricated in 130- and 65-nm technologies, which can work all the way down to a supply voltage of 50 and 60 mV (with output swings of 42 and 43 mV), respectively, and are close to the fundamental limit of logic operation. For the first time, we present a measured minimum dynamic-switching energy of 21.3 aJ/cycle. This is accomplished by modulating the effective β-ratio to balance the p-channel and n-channel MOS transistors in strength, enabling the operation of standard CMOS logic at ultralow voltages. We also discuss 41-stage ring oscillators, which clearly show the existence of different optimal β-ratios in different regions of operation in terms of performance and robustness under process variations.</description><subject>Applied sciences</subject><subject>beta -ratio</subject><subject>Circuit properties</subject><subject>CMOS</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Digital circuits</subject><subject>Dynamic voltage scaling (DVS)</subject><subject>Electric potential</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>fundamental limit</subject><subject>Integrated circuits</subject><subject>Inverters</subject><subject>Logic</subject><subject>minimum supply voltage</subject><subject>MOSFETs</subject><subject>Noise</subject><subject>noise margin</subject><subject>Oscillators</subject><subject>Robustness</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>subthreshold logic</subject><subject>Swing</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEGLFDEQRoMoOK7eBS9BEE89ppJOJznKuKvCoMLO7jVk0umZLOlkTNKH_fdmmWEPUoei-F4VxUPoPZA1AFFfdtff1pQArClwoFy8QCvgXHRq6IeXaEUIyE4xyV6jN6U8tHHoe7pCx9vldAqP3X0K1RwcvrUm-HjAm5CKwzXhenT4ZomjmV2sJuCtn33Fd3F0Gf_JybpS8L3J3lSfYsE-4l8mptnVlu-cPcYU0sG78ha9mkwo7t2lX6G7m-vd5ke3_f395-brtrM9yNrRkUjmQI1iNFzsCQhmBBWwB6CUsVEpPlE-KQ7c8klIaYUUg9pTUKqXw55doc_nu6ec_i6uVD37Yl0IJrq0FK0aCK14Iz_-Rz6kJcf2nJZCEUYYFw0iZ8jmVEp2kz5lP5v8qIHoJ_G6iddP4vVFfFv5dLlrSrM5ZROtL897tO-BS9437sOZ886555gLMQyCsH_qzIpn</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>HWANG, Myeong-Eun</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110801</creationdate><title>Supply-Voltage Scaling Close to the Fundamental Limit Under Process Variations in Nanometer Technologies</title><author>HWANG, Myeong-Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-2d083e19d7da57b0173a7271b112233d995f25f9515c5f788c78769b2199486b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>beta -ratio</topic><topic>Circuit properties</topic><topic>CMOS</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Digital circuits</topic><topic>Dynamic voltage scaling (DVS)</topic><topic>Electric potential</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>fundamental limit</topic><topic>Integrated circuits</topic><topic>Inverters</topic><topic>Logic</topic><topic>minimum supply voltage</topic><topic>MOSFETs</topic><topic>Noise</topic><topic>noise margin</topic><topic>Oscillators</topic><topic>Robustness</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>subthreshold logic</topic><topic>Swing</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HWANG, Myeong-Eun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HWANG, Myeong-Eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supply-Voltage Scaling Close to the Fundamental Limit Under Process Variations in Nanometer Technologies</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>58</volume><issue>8</issue><spage>2808</spage><epage>2813</epage><pages>2808-2813</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The fundamental limit on the minimum allowable supply voltage of a complementary metal-oxide-semiconductor (CMOS) logic gate for binary signal discrimination is V dd, min ≅ 2( ln 2) kT / q . With the theoretical analysis of our proposed circuit technique, we demonstrate an ultralow-voltage operation with two 1000-stage inverter chains fabricated in 130- and 65-nm technologies, which can work all the way down to a supply voltage of 50 and 60 mV (with output swings of 42 and 43 mV), respectively, and are close to the fundamental limit of logic operation. For the first time, we present a measured minimum dynamic-switching energy of 21.3 aJ/cycle. This is accomplished by modulating the effective β-ratio to balance the p-channel and n-channel MOS transistors in strength, enabling the operation of standard CMOS logic at ultralow voltages. We also discuss 41-stage ring oscillators, which clearly show the existence of different optimal β-ratios in different regions of operation in terms of performance and robustness under process variations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2151257</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2011-08, Vol.58 (8), p.2808-2813
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_5776670
source IEEE Electronic Library (IEL)
subjects Applied sciences
beta -ratio
Circuit properties
CMOS
Design. Technologies. Operation analysis. Testing
Devices
Digital circuits
Dynamic voltage scaling (DVS)
Electric potential
Electric, optical and optoelectronic circuits
Electronic circuits
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
fundamental limit
Integrated circuits
Inverters
Logic
minimum supply voltage
MOSFETs
Noise
noise margin
Oscillators
Robustness
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
subthreshold logic
Swing
Threshold voltage
Transistors
Voltage
Voltage control
title Supply-Voltage Scaling Close to the Fundamental Limit Under Process Variations in Nanometer Technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supply-Voltage%20Scaling%20Close%20to%20the%20Fundamental%20Limit%20Under%20Process%20Variations%20in%20Nanometer%20Technologies&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=HWANG,%20Myeong-Eun&rft.date=2011-08-01&rft.volume=58&rft.issue=8&rft.spage=2808&rft.epage=2813&rft.pages=2808-2813&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2151257&rft_dat=%3Cproquest_RIE%3E919919195%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879030357&rft_id=info:pmid/&rft_ieee_id=5776670&rfr_iscdi=true