Regularized Subspace Gaussian Mixture Models for Speech Recognition

Subspace Gaussian mixture models (SGMMs) provide a compact representation of the Gaussian parameters in an acoustic model, but may still suffer from over-fitting with insufficient training data. In this letter, the SGMM state parameters are estimated using a penalized maximum-likelihood objective, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2011-07, Vol.18 (7), p.419-422
Hauptverfasser: Liang Lu, Ghoshal, A, Renals, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subspace Gaussian mixture models (SGMMs) provide a compact representation of the Gaussian parameters in an acoustic model, but may still suffer from over-fitting with insufficient training data. In this letter, the SGMM state parameters are estimated using a penalized maximum-likelihood objective, based on l 1 and l 2 regularization, as well as their combination, referred to as the elastic net, for robust model estimation. Experiments on the 5000-word Wall Street Journal transcription task show word error rate reduction and improved model robustness with regularization.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2011.2157820