Fuzzy cluster analysis method of river pattern classification in alluvial river

The river patterns of six sub-reaches between Huayuankou and Lijin hydrologic stations of the Lower Yellow River are classified based on the analysis of the 21 years data with mathematical statistics and fuzzy cluster method. The method is developed from the theory of plant taxonomy, sediment transp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Qinxiang Wang, Chuanwen Shi
Format: Tagungsbericht
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2287
container_issue
container_start_page 2284
container_title
container_volume
creator Qinxiang Wang
Chuanwen Shi
description The river patterns of six sub-reaches between Huayuankou and Lijin hydrologic stations of the Lower Yellow River are classified based on the analysis of the 21 years data with mathematical statistics and fuzzy cluster method. The method is developed from the theory of plant taxonomy, sediment transportion theory and stabilization degree equation. The results indicate that if river pattern cluster in 3 groups, the result is similar to the actual river pattern. If river pattern cluster in 4 groups, the result matches well with the actual river pattern. It is concluded that fuzzy cluster analysis method of river pattern classification in alluvial river is reliable, but the statistics method is difficult to obtain the threshold values of boundaries and the river pattern can't be classified effectively.
doi_str_mv 10.1109/ICETCE.2011.5774428
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5774428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5774428</ieee_id><sourcerecordid>5774428</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-861b1ba6d5e2210407c1beb9219b19a26f89118a35c7411c2a94e9b40c129e643</originalsourceid><addsrcrecordid>eNpNUM1qwzAY8xiDjS5P0ItfIJk_x_HPcYR2KxR66b18dh3m4SYlTgvp08_QHqaLEBJCiJAlsAqAmY9Nu9q3q4ozgKpRSgiun0hhlAaRJeOGqef_Wht4JUVKvyxDSgOavZHd-nK7zdTFS5r8SLHHOKeQ6MlPP8ORDh0dwzUbZ5yy3-cgphS64HAKQ09DTzHGyzVgvAffyUuHMfniwQuyX-eZ3-V297VpP7dlMGwqtQQLFuWx8ZwDE0w5sN4aDsaCQS67PBY01o1TAsBxNMIbK5gDbrwU9YIs77XBe384j-GE43x4vFD_AYyBUQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy cluster analysis method of river pattern classification in alluvial river</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qinxiang Wang ; Chuanwen Shi</creator><creatorcontrib>Qinxiang Wang ; Chuanwen Shi</creatorcontrib><description>The river patterns of six sub-reaches between Huayuankou and Lijin hydrologic stations of the Lower Yellow River are classified based on the analysis of the 21 years data with mathematical statistics and fuzzy cluster method. The method is developed from the theory of plant taxonomy, sediment transportion theory and stabilization degree equation. The results indicate that if river pattern cluster in 3 groups, the result is similar to the actual river pattern. If river pattern cluster in 4 groups, the result matches well with the actual river pattern. It is concluded that fuzzy cluster analysis method of river pattern classification in alluvial river is reliable, but the statistics method is difficult to obtain the threshold values of boundaries and the river pattern can't be classified effectively.</description><identifier>ISBN: 9781457702891</identifier><identifier>ISBN: 1457702894</identifier><identifier>EISBN: 9781457702907</identifier><identifier>EISBN: 1457702886</identifier><identifier>EISBN: 9781457702884</identifier><identifier>EISBN: 1457702908</identifier><identifier>DOI: 10.1109/ICETCE.2011.5774428</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Economics ; Equations ; Fuzzy equivalence matrix clustering ; Hydrology ; Natural river pattern classification ; Pattern classification ; Presses ; River sediment engineering ; Rivers ; Sediment transportion equilibrium degree ; Sediments</subject><ispartof>2011 International Conference on Electric Technology and Civil Engineering (ICETCE), 2011, p.2284-2287</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5774428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5774428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qinxiang Wang</creatorcontrib><creatorcontrib>Chuanwen Shi</creatorcontrib><title>Fuzzy cluster analysis method of river pattern classification in alluvial river</title><title>2011 International Conference on Electric Technology and Civil Engineering (ICETCE)</title><addtitle>ICETCE</addtitle><description>The river patterns of six sub-reaches between Huayuankou and Lijin hydrologic stations of the Lower Yellow River are classified based on the analysis of the 21 years data with mathematical statistics and fuzzy cluster method. The method is developed from the theory of plant taxonomy, sediment transportion theory and stabilization degree equation. The results indicate that if river pattern cluster in 3 groups, the result is similar to the actual river pattern. If river pattern cluster in 4 groups, the result matches well with the actual river pattern. It is concluded that fuzzy cluster analysis method of river pattern classification in alluvial river is reliable, but the statistics method is difficult to obtain the threshold values of boundaries and the river pattern can't be classified effectively.</description><subject>Economics</subject><subject>Equations</subject><subject>Fuzzy equivalence matrix clustering</subject><subject>Hydrology</subject><subject>Natural river pattern classification</subject><subject>Pattern classification</subject><subject>Presses</subject><subject>River sediment engineering</subject><subject>Rivers</subject><subject>Sediment transportion equilibrium degree</subject><subject>Sediments</subject><isbn>9781457702891</isbn><isbn>1457702894</isbn><isbn>9781457702907</isbn><isbn>1457702886</isbn><isbn>9781457702884</isbn><isbn>1457702908</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNUM1qwzAY8xiDjS5P0ItfIJk_x_HPcYR2KxR66b18dh3m4SYlTgvp08_QHqaLEBJCiJAlsAqAmY9Nu9q3q4ozgKpRSgiun0hhlAaRJeOGqef_Wht4JUVKvyxDSgOavZHd-nK7zdTFS5r8SLHHOKeQ6MlPP8ORDh0dwzUbZ5yy3-cgphS64HAKQ09DTzHGyzVgvAffyUuHMfniwQuyX-eZ3-V297VpP7dlMGwqtQQLFuWx8ZwDE0w5sN4aDsaCQS67PBY01o1TAsBxNMIbK5gDbrwU9YIs77XBe384j-GE43x4vFD_AYyBUQA</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Qinxiang Wang</creator><creator>Chuanwen Shi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Fuzzy cluster analysis method of river pattern classification in alluvial river</title><author>Qinxiang Wang ; Chuanwen Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-861b1ba6d5e2210407c1beb9219b19a26f89118a35c7411c2a94e9b40c129e643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>Economics</topic><topic>Equations</topic><topic>Fuzzy equivalence matrix clustering</topic><topic>Hydrology</topic><topic>Natural river pattern classification</topic><topic>Pattern classification</topic><topic>Presses</topic><topic>River sediment engineering</topic><topic>Rivers</topic><topic>Sediment transportion equilibrium degree</topic><topic>Sediments</topic><toplevel>online_resources</toplevel><creatorcontrib>Qinxiang Wang</creatorcontrib><creatorcontrib>Chuanwen Shi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qinxiang Wang</au><au>Chuanwen Shi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy cluster analysis method of river pattern classification in alluvial river</atitle><btitle>2011 International Conference on Electric Technology and Civil Engineering (ICETCE)</btitle><stitle>ICETCE</stitle><date>2011-04</date><risdate>2011</risdate><spage>2284</spage><epage>2287</epage><pages>2284-2287</pages><isbn>9781457702891</isbn><isbn>1457702894</isbn><eisbn>9781457702907</eisbn><eisbn>1457702886</eisbn><eisbn>9781457702884</eisbn><eisbn>1457702908</eisbn><abstract>The river patterns of six sub-reaches between Huayuankou and Lijin hydrologic stations of the Lower Yellow River are classified based on the analysis of the 21 years data with mathematical statistics and fuzzy cluster method. The method is developed from the theory of plant taxonomy, sediment transportion theory and stabilization degree equation. The results indicate that if river pattern cluster in 3 groups, the result is similar to the actual river pattern. If river pattern cluster in 4 groups, the result matches well with the actual river pattern. It is concluded that fuzzy cluster analysis method of river pattern classification in alluvial river is reliable, but the statistics method is difficult to obtain the threshold values of boundaries and the river pattern can't be classified effectively.</abstract><pub>IEEE</pub><doi>10.1109/ICETCE.2011.5774428</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457702891
ispartof 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), 2011, p.2284-2287
issn
language chi ; eng
recordid cdi_ieee_primary_5774428
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Economics
Equations
Fuzzy equivalence matrix clustering
Hydrology
Natural river pattern classification
Pattern classification
Presses
River sediment engineering
Rivers
Sediment transportion equilibrium degree
Sediments
title Fuzzy cluster analysis method of river pattern classification in alluvial river
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20cluster%20analysis%20method%20of%20river%20pattern%20classification%20in%20alluvial%20river&rft.btitle=2011%20International%20Conference%20on%20Electric%20Technology%20and%20Civil%20Engineering%20(ICETCE)&rft.au=Qinxiang%20Wang&rft.date=2011-04&rft.spage=2284&rft.epage=2287&rft.pages=2284-2287&rft.isbn=9781457702891&rft.isbn_list=1457702894&rft_id=info:doi/10.1109/ICETCE.2011.5774428&rft_dat=%3Cieee_6IE%3E5774428%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457702907&rft.eisbn_list=1457702886&rft.eisbn_list=9781457702884&rft.eisbn_list=1457702908&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5774428&rfr_iscdi=true