Fuzzy cluster analysis method of river pattern classification in alluvial river
The river patterns of six sub-reaches between Huayuankou and Lijin hydrologic stations of the Lower Yellow River are classified based on the analysis of the 21 years data with mathematical statistics and fuzzy cluster method. The method is developed from the theory of plant taxonomy, sediment transp...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2287 |
---|---|
container_issue | |
container_start_page | 2284 |
container_title | |
container_volume | |
creator | Qinxiang Wang Chuanwen Shi |
description | The river patterns of six sub-reaches between Huayuankou and Lijin hydrologic stations of the Lower Yellow River are classified based on the analysis of the 21 years data with mathematical statistics and fuzzy cluster method. The method is developed from the theory of plant taxonomy, sediment transportion theory and stabilization degree equation. The results indicate that if river pattern cluster in 3 groups, the result is similar to the actual river pattern. If river pattern cluster in 4 groups, the result matches well with the actual river pattern. It is concluded that fuzzy cluster analysis method of river pattern classification in alluvial river is reliable, but the statistics method is difficult to obtain the threshold values of boundaries and the river pattern can't be classified effectively. |
doi_str_mv | 10.1109/ICETCE.2011.5774428 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5774428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5774428</ieee_id><sourcerecordid>5774428</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-861b1ba6d5e2210407c1beb9219b19a26f89118a35c7411c2a94e9b40c129e643</originalsourceid><addsrcrecordid>eNpNUM1qwzAY8xiDjS5P0ItfIJk_x_HPcYR2KxR66b18dh3m4SYlTgvp08_QHqaLEBJCiJAlsAqAmY9Nu9q3q4ozgKpRSgiun0hhlAaRJeOGqef_Wht4JUVKvyxDSgOavZHd-nK7zdTFS5r8SLHHOKeQ6MlPP8ORDh0dwzUbZ5yy3-cgphS64HAKQ09DTzHGyzVgvAffyUuHMfniwQuyX-eZ3-V297VpP7dlMGwqtQQLFuWx8ZwDE0w5sN4aDsaCQS67PBY01o1TAsBxNMIbK5gDbrwU9YIs77XBe384j-GE43x4vFD_AYyBUQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy cluster analysis method of river pattern classification in alluvial river</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qinxiang Wang ; Chuanwen Shi</creator><creatorcontrib>Qinxiang Wang ; Chuanwen Shi</creatorcontrib><description>The river patterns of six sub-reaches between Huayuankou and Lijin hydrologic stations of the Lower Yellow River are classified based on the analysis of the 21 years data with mathematical statistics and fuzzy cluster method. The method is developed from the theory of plant taxonomy, sediment transportion theory and stabilization degree equation. The results indicate that if river pattern cluster in 3 groups, the result is similar to the actual river pattern. If river pattern cluster in 4 groups, the result matches well with the actual river pattern. It is concluded that fuzzy cluster analysis method of river pattern classification in alluvial river is reliable, but the statistics method is difficult to obtain the threshold values of boundaries and the river pattern can't be classified effectively.</description><identifier>ISBN: 9781457702891</identifier><identifier>ISBN: 1457702894</identifier><identifier>EISBN: 9781457702907</identifier><identifier>EISBN: 1457702886</identifier><identifier>EISBN: 9781457702884</identifier><identifier>EISBN: 1457702908</identifier><identifier>DOI: 10.1109/ICETCE.2011.5774428</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Economics ; Equations ; Fuzzy equivalence matrix clustering ; Hydrology ; Natural river pattern classification ; Pattern classification ; Presses ; River sediment engineering ; Rivers ; Sediment transportion equilibrium degree ; Sediments</subject><ispartof>2011 International Conference on Electric Technology and Civil Engineering (ICETCE), 2011, p.2284-2287</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5774428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5774428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qinxiang Wang</creatorcontrib><creatorcontrib>Chuanwen Shi</creatorcontrib><title>Fuzzy cluster analysis method of river pattern classification in alluvial river</title><title>2011 International Conference on Electric Technology and Civil Engineering (ICETCE)</title><addtitle>ICETCE</addtitle><description>The river patterns of six sub-reaches between Huayuankou and Lijin hydrologic stations of the Lower Yellow River are classified based on the analysis of the 21 years data with mathematical statistics and fuzzy cluster method. The method is developed from the theory of plant taxonomy, sediment transportion theory and stabilization degree equation. The results indicate that if river pattern cluster in 3 groups, the result is similar to the actual river pattern. If river pattern cluster in 4 groups, the result matches well with the actual river pattern. It is concluded that fuzzy cluster analysis method of river pattern classification in alluvial river is reliable, but the statistics method is difficult to obtain the threshold values of boundaries and the river pattern can't be classified effectively.</description><subject>Economics</subject><subject>Equations</subject><subject>Fuzzy equivalence matrix clustering</subject><subject>Hydrology</subject><subject>Natural river pattern classification</subject><subject>Pattern classification</subject><subject>Presses</subject><subject>River sediment engineering</subject><subject>Rivers</subject><subject>Sediment transportion equilibrium degree</subject><subject>Sediments</subject><isbn>9781457702891</isbn><isbn>1457702894</isbn><isbn>9781457702907</isbn><isbn>1457702886</isbn><isbn>9781457702884</isbn><isbn>1457702908</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNUM1qwzAY8xiDjS5P0ItfIJk_x_HPcYR2KxR66b18dh3m4SYlTgvp08_QHqaLEBJCiJAlsAqAmY9Nu9q3q4ozgKpRSgiun0hhlAaRJeOGqef_Wht4JUVKvyxDSgOavZHd-nK7zdTFS5r8SLHHOKeQ6MlPP8ORDh0dwzUbZ5yy3-cgphS64HAKQ09DTzHGyzVgvAffyUuHMfniwQuyX-eZ3-V297VpP7dlMGwqtQQLFuWx8ZwDE0w5sN4aDsaCQS67PBY01o1TAsBxNMIbK5gDbrwU9YIs77XBe384j-GE43x4vFD_AYyBUQA</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Qinxiang Wang</creator><creator>Chuanwen Shi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Fuzzy cluster analysis method of river pattern classification in alluvial river</title><author>Qinxiang Wang ; Chuanwen Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-861b1ba6d5e2210407c1beb9219b19a26f89118a35c7411c2a94e9b40c129e643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>Economics</topic><topic>Equations</topic><topic>Fuzzy equivalence matrix clustering</topic><topic>Hydrology</topic><topic>Natural river pattern classification</topic><topic>Pattern classification</topic><topic>Presses</topic><topic>River sediment engineering</topic><topic>Rivers</topic><topic>Sediment transportion equilibrium degree</topic><topic>Sediments</topic><toplevel>online_resources</toplevel><creatorcontrib>Qinxiang Wang</creatorcontrib><creatorcontrib>Chuanwen Shi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qinxiang Wang</au><au>Chuanwen Shi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy cluster analysis method of river pattern classification in alluvial river</atitle><btitle>2011 International Conference on Electric Technology and Civil Engineering (ICETCE)</btitle><stitle>ICETCE</stitle><date>2011-04</date><risdate>2011</risdate><spage>2284</spage><epage>2287</epage><pages>2284-2287</pages><isbn>9781457702891</isbn><isbn>1457702894</isbn><eisbn>9781457702907</eisbn><eisbn>1457702886</eisbn><eisbn>9781457702884</eisbn><eisbn>1457702908</eisbn><abstract>The river patterns of six sub-reaches between Huayuankou and Lijin hydrologic stations of the Lower Yellow River are classified based on the analysis of the 21 years data with mathematical statistics and fuzzy cluster method. The method is developed from the theory of plant taxonomy, sediment transportion theory and stabilization degree equation. The results indicate that if river pattern cluster in 3 groups, the result is similar to the actual river pattern. If river pattern cluster in 4 groups, the result matches well with the actual river pattern. It is concluded that fuzzy cluster analysis method of river pattern classification in alluvial river is reliable, but the statistics method is difficult to obtain the threshold values of boundaries and the river pattern can't be classified effectively.</abstract><pub>IEEE</pub><doi>10.1109/ICETCE.2011.5774428</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457702891 |
ispartof | 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), 2011, p.2284-2287 |
issn | |
language | chi ; eng |
recordid | cdi_ieee_primary_5774428 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Economics Equations Fuzzy equivalence matrix clustering Hydrology Natural river pattern classification Pattern classification Presses River sediment engineering Rivers Sediment transportion equilibrium degree Sediments |
title | Fuzzy cluster analysis method of river pattern classification in alluvial river |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20cluster%20analysis%20method%20of%20river%20pattern%20classification%20in%20alluvial%20river&rft.btitle=2011%20International%20Conference%20on%20Electric%20Technology%20and%20Civil%20Engineering%20(ICETCE)&rft.au=Qinxiang%20Wang&rft.date=2011-04&rft.spage=2284&rft.epage=2287&rft.pages=2284-2287&rft.isbn=9781457702891&rft.isbn_list=1457702894&rft_id=info:doi/10.1109/ICETCE.2011.5774428&rft_dat=%3Cieee_6IE%3E5774428%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457702907&rft.eisbn_list=1457702886&rft.eisbn_list=9781457702884&rft.eisbn_list=1457702908&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5774428&rfr_iscdi=true |