The motion in emotion - A CERT based approach to the FERA emotion challenge
This paper assesses the performance of measures of facial expression dynamics derived from the Computer Expression Recognition Toolbox (CERT) for classifying emotions in the Facial Expression Recognition and Analysis (FERA) Challenge. The CERT system automatically estimates facial action intensity a...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 902 |
---|---|
container_issue | |
container_start_page | 897 |
container_title | |
container_volume | |
creator | Littlewort, G Whitehill, J Ting-Fan Wu Butko, N Ruvolo, P Movellan, J Bartlett, M |
description | This paper assesses the performance of measures of facial expression dynamics derived from the Computer Expression Recognition Toolbox (CERT) for classifying emotions in the Facial Expression Recognition and Analysis (FERA) Challenge. The CERT system automatically estimates facial action intensity and head position using learned appearance-based models on single frames of video. CERT outputs were used to derive a representation of the intensity and motion in each video, consisting of the extremes of displacement, velocity and acceleration. Using this representation, emotion detectors were trained on the FERA training examples. Experiments on the released portion of the FERA dataset are presented, as well as results on the blind test. No consideration of subject identity was taken into account in the blind test. The F1 scores were well above the baseline criterion for success. |
doi_str_mv | 10.1109/FG.2011.5771370 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5771370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5771370</ieee_id><sourcerecordid>5771370</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-389a2412a69210c043b32469c473012005c98e861258ea3d7468e7bb55e61b243</originalsourceid><addsrcrecordid>eNo9j09Lw0AUxFdEUGvPHrzsF0h8b__vMYSkFQtCyb3spk8TSZOQ5OK3VzD0NDPwm4Fh7BkhRQT_Wu5SAYipthalhRv2iEoo5VF6d3sNCvCebef5GwAQpJbGPLD3qiF-GZZ26Hnbc1ptwjOeF8eKxzDTmYdxnIZQN3wZ-PJXKItjdmXrJnQd9V_0xO4-QzfTdtUNq8qiyvfJ4WP3lmeHpPWwJNL5IBSKYLxAqEHJKIUyvlZWAgoAXXtHzqDQjoI8W2Uc2Ri1JoNRKLlhL_-zLRGdxqm9hOnntH6Xv-01SQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The motion in emotion - A CERT based approach to the FERA emotion challenge</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Littlewort, G ; Whitehill, J ; Ting-Fan Wu ; Butko, N ; Ruvolo, P ; Movellan, J ; Bartlett, M</creator><creatorcontrib>Littlewort, G ; Whitehill, J ; Ting-Fan Wu ; Butko, N ; Ruvolo, P ; Movellan, J ; Bartlett, M</creatorcontrib><description>This paper assesses the performance of measures of facial expression dynamics derived from the Computer Expression Recognition Toolbox (CERT) for classifying emotions in the Facial Expression Recognition and Analysis (FERA) Challenge. The CERT system automatically estimates facial action intensity and head position using learned appearance-based models on single frames of video. CERT outputs were used to derive a representation of the intensity and motion in each video, consisting of the extremes of displacement, velocity and acceleration. Using this representation, emotion detectors were trained on the FERA training examples. Experiments on the released portion of the FERA dataset are presented, as well as results on the blind test. No consideration of subject identity was taken into account in the blind test. The F1 scores were well above the baseline criterion for success.</description><identifier>ISBN: 1424491401</identifier><identifier>ISBN: 9781424491407</identifier><identifier>EISBN: 1424491398</identifier><identifier>EISBN: 9781424491414</identifier><identifier>EISBN: 9781424491391</identifier><identifier>EISBN: 142449141X</identifier><identifier>DOI: 10.1109/FG.2011.5771370</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Detectors ; Emotion recognition ; Face recognition ; Head ; Training</subject><ispartof>Face and Gesture 2011, 2011, p.897-902</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5771370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5771370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Littlewort, G</creatorcontrib><creatorcontrib>Whitehill, J</creatorcontrib><creatorcontrib>Ting-Fan Wu</creatorcontrib><creatorcontrib>Butko, N</creatorcontrib><creatorcontrib>Ruvolo, P</creatorcontrib><creatorcontrib>Movellan, J</creatorcontrib><creatorcontrib>Bartlett, M</creatorcontrib><title>The motion in emotion - A CERT based approach to the FERA emotion challenge</title><title>Face and Gesture 2011</title><addtitle>FG</addtitle><description>This paper assesses the performance of measures of facial expression dynamics derived from the Computer Expression Recognition Toolbox (CERT) for classifying emotions in the Facial Expression Recognition and Analysis (FERA) Challenge. The CERT system automatically estimates facial action intensity and head position using learned appearance-based models on single frames of video. CERT outputs were used to derive a representation of the intensity and motion in each video, consisting of the extremes of displacement, velocity and acceleration. Using this representation, emotion detectors were trained on the FERA training examples. Experiments on the released portion of the FERA dataset are presented, as well as results on the blind test. No consideration of subject identity was taken into account in the blind test. The F1 scores were well above the baseline criterion for success.</description><subject>Acceleration</subject><subject>Detectors</subject><subject>Emotion recognition</subject><subject>Face recognition</subject><subject>Head</subject><subject>Training</subject><isbn>1424491401</isbn><isbn>9781424491407</isbn><isbn>1424491398</isbn><isbn>9781424491414</isbn><isbn>9781424491391</isbn><isbn>142449141X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j09Lw0AUxFdEUGvPHrzsF0h8b__vMYSkFQtCyb3spk8TSZOQ5OK3VzD0NDPwm4Fh7BkhRQT_Wu5SAYipthalhRv2iEoo5VF6d3sNCvCebef5GwAQpJbGPLD3qiF-GZZ26Hnbc1ptwjOeF8eKxzDTmYdxnIZQN3wZ-PJXKItjdmXrJnQd9V_0xO4-QzfTdtUNq8qiyvfJ4WP3lmeHpPWwJNL5IBSKYLxAqEHJKIUyvlZWAgoAXXtHzqDQjoI8W2Uc2Ri1JoNRKLlhL_-zLRGdxqm9hOnntH6Xv-01SQA</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Littlewort, G</creator><creator>Whitehill, J</creator><creator>Ting-Fan Wu</creator><creator>Butko, N</creator><creator>Ruvolo, P</creator><creator>Movellan, J</creator><creator>Bartlett, M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>The motion in emotion - A CERT based approach to the FERA emotion challenge</title><author>Littlewort, G ; Whitehill, J ; Ting-Fan Wu ; Butko, N ; Ruvolo, P ; Movellan, J ; Bartlett, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-389a2412a69210c043b32469c473012005c98e861258ea3d7468e7bb55e61b243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acceleration</topic><topic>Detectors</topic><topic>Emotion recognition</topic><topic>Face recognition</topic><topic>Head</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Littlewort, G</creatorcontrib><creatorcontrib>Whitehill, J</creatorcontrib><creatorcontrib>Ting-Fan Wu</creatorcontrib><creatorcontrib>Butko, N</creatorcontrib><creatorcontrib>Ruvolo, P</creatorcontrib><creatorcontrib>Movellan, J</creatorcontrib><creatorcontrib>Bartlett, M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Littlewort, G</au><au>Whitehill, J</au><au>Ting-Fan Wu</au><au>Butko, N</au><au>Ruvolo, P</au><au>Movellan, J</au><au>Bartlett, M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The motion in emotion - A CERT based approach to the FERA emotion challenge</atitle><btitle>Face and Gesture 2011</btitle><stitle>FG</stitle><date>2011-03</date><risdate>2011</risdate><spage>897</spage><epage>902</epage><pages>897-902</pages><isbn>1424491401</isbn><isbn>9781424491407</isbn><eisbn>1424491398</eisbn><eisbn>9781424491414</eisbn><eisbn>9781424491391</eisbn><eisbn>142449141X</eisbn><abstract>This paper assesses the performance of measures of facial expression dynamics derived from the Computer Expression Recognition Toolbox (CERT) for classifying emotions in the Facial Expression Recognition and Analysis (FERA) Challenge. The CERT system automatically estimates facial action intensity and head position using learned appearance-based models on single frames of video. CERT outputs were used to derive a representation of the intensity and motion in each video, consisting of the extremes of displacement, velocity and acceleration. Using this representation, emotion detectors were trained on the FERA training examples. Experiments on the released portion of the FERA dataset are presented, as well as results on the blind test. No consideration of subject identity was taken into account in the blind test. The F1 scores were well above the baseline criterion for success.</abstract><pub>IEEE</pub><doi>10.1109/FG.2011.5771370</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424491401 |
ispartof | Face and Gesture 2011, 2011, p.897-902 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5771370 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Detectors Emotion recognition Face recognition Head Training |
title | The motion in emotion - A CERT based approach to the FERA emotion challenge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20motion%20in%20emotion%20-%20A%20CERT%20based%20approach%20to%20the%20FERA%20emotion%20challenge&rft.btitle=Face%20and%20Gesture%202011&rft.au=Littlewort,%20G&rft.date=2011-03&rft.spage=897&rft.epage=902&rft.pages=897-902&rft.isbn=1424491401&rft.isbn_list=9781424491407&rft_id=info:doi/10.1109/FG.2011.5771370&rft_dat=%3Cieee_6IE%3E5771370%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424491398&rft.eisbn_list=9781424491414&rft.eisbn_list=9781424491391&rft.eisbn_list=142449141X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5771370&rfr_iscdi=true |