Spectrum based fraud detection in social networks

Social networks are vulnerable to various attacks such as spam emails, viral marketing and the such. In this paper we develop a spectrum based detection framework to discover the perpetrators of these attacks. In particular, we focus on Random Link Attacks (RLAs) in which the malicious user creates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ying, Xiaowei, Wu, Xintao, Barbara, Daniel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 923
container_issue
container_start_page 912
container_title
container_volume
creator Ying, Xiaowei
Wu, Xintao
Barbara, Daniel
description Social networks are vulnerable to various attacks such as spam emails, viral marketing and the such. In this paper we develop a spectrum based detection framework to discover the perpetrators of these attacks. In particular, we focus on Random Link Attacks (RLAs) in which the malicious user creates multiple false identities and interactions among those identities to later proceed to attack the regular members of the network. We show that RLA attackers can be filtered by using their spectral coordinate characteristics, which are hard to hide even after the efforts by the attackers of resembling as much as possible the rest of the network. Experimental results show that our technique is very effective in detecting those attackers and outperforms techniques previously published.
doi_str_mv 10.1109/ICDE.2011.5767910
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5767910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5767910</ieee_id><sourcerecordid>5767910</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-d4d1db1f489652c2b48c827f32e1837b21968e125c4fa0d9a98a565d8cad84923</originalsourceid><addsrcrecordid>eNotj9tKxDAYhOMJrGsfQLzJC7Tm_3O-lLrqwoIXKni3pEkK0d12abqIb--KnZuB-WCYIeQGWA3A7N2qeVjWyABqqZW2wE7IFQgUwljF4JQUyLWsGKqPM1JabWYmrTonBTDFK8UNXpIy5092lBUAkhUEXvfRT-NhR1uXY6Dd6A6Bhjgd0zT0NPU0Dz65Le3j9D2MX_maXHRum2M5-4K8Py7fmudq_fK0au7XVUIBUxVEgNBC9zdQosdWGG9QdxwjGK5bBKtMBJRedI4F66xxUslgvAtGWOQLcvvfm2KMm_2Ydm782czv-S_TaEhf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spectrum based fraud detection in social networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying, Xiaowei ; Wu, Xintao ; Barbara, Daniel</creator><creatorcontrib>Ying, Xiaowei ; Wu, Xintao ; Barbara, Daniel</creatorcontrib><description>Social networks are vulnerable to various attacks such as spam emails, viral marketing and the such. In this paper we develop a spectrum based detection framework to discover the perpetrators of these attacks. In particular, we focus on Random Link Attacks (RLAs) in which the malicious user creates multiple false identities and interactions among those identities to later proceed to attack the regular members of the network. We show that RLA attackers can be filtered by using their spectral coordinate characteristics, which are hard to hide even after the efforts by the attackers of resembling as much as possible the rest of the network. Experimental results show that our technique is very effective in detecting those attackers and outperforms techniques previously published.</description><identifier>ISSN: 1063-6382</identifier><identifier>ISBN: 9781424489596</identifier><identifier>ISBN: 1424489598</identifier><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 1424489601</identifier><identifier>EISBN: 142448958X</identifier><identifier>EISBN: 9781424489589</identifier><identifier>EISBN: 9781424489602</identifier><identifier>DOI: 10.1109/ICDE.2011.5767910</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Blogs ; Collaboration ; Eigenvalues and eigenfunctions ; Electronic mail ; Social network services ; Topology</subject><ispartof>2011 IEEE 27th International Conference on Data Engineering, 2011, p.912-923</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5767910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5767910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying, Xiaowei</creatorcontrib><creatorcontrib>Wu, Xintao</creatorcontrib><creatorcontrib>Barbara, Daniel</creatorcontrib><title>Spectrum based fraud detection in social networks</title><title>2011 IEEE 27th International Conference on Data Engineering</title><addtitle>ICDE</addtitle><description>Social networks are vulnerable to various attacks such as spam emails, viral marketing and the such. In this paper we develop a spectrum based detection framework to discover the perpetrators of these attacks. In particular, we focus on Random Link Attacks (RLAs) in which the malicious user creates multiple false identities and interactions among those identities to later proceed to attack the regular members of the network. We show that RLA attackers can be filtered by using their spectral coordinate characteristics, which are hard to hide even after the efforts by the attackers of resembling as much as possible the rest of the network. Experimental results show that our technique is very effective in detecting those attackers and outperforms techniques previously published.</description><subject>Approximation methods</subject><subject>Blogs</subject><subject>Collaboration</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electronic mail</subject><subject>Social network services</subject><subject>Topology</subject><issn>1063-6382</issn><issn>2375-026X</issn><isbn>9781424489596</isbn><isbn>1424489598</isbn><isbn>1424489601</isbn><isbn>142448958X</isbn><isbn>9781424489589</isbn><isbn>9781424489602</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj9tKxDAYhOMJrGsfQLzJC7Tm_3O-lLrqwoIXKni3pEkK0d12abqIb--KnZuB-WCYIeQGWA3A7N2qeVjWyABqqZW2wE7IFQgUwljF4JQUyLWsGKqPM1JabWYmrTonBTDFK8UNXpIy5092lBUAkhUEXvfRT-NhR1uXY6Dd6A6Bhjgd0zT0NPU0Dz65Le3j9D2MX_maXHRum2M5-4K8Py7fmudq_fK0au7XVUIBUxVEgNBC9zdQosdWGG9QdxwjGK5bBKtMBJRedI4F66xxUslgvAtGWOQLcvvfm2KMm_2Ydm782czv-S_TaEhf</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Ying, Xiaowei</creator><creator>Wu, Xintao</creator><creator>Barbara, Daniel</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201104</creationdate><title>Spectrum based fraud detection in social networks</title><author>Ying, Xiaowei ; Wu, Xintao ; Barbara, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-d4d1db1f489652c2b48c827f32e1837b21968e125c4fa0d9a98a565d8cad84923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation methods</topic><topic>Blogs</topic><topic>Collaboration</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electronic mail</topic><topic>Social network services</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying, Xiaowei</creatorcontrib><creatorcontrib>Wu, Xintao</creatorcontrib><creatorcontrib>Barbara, Daniel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying, Xiaowei</au><au>Wu, Xintao</au><au>Barbara, Daniel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spectrum based fraud detection in social networks</atitle><btitle>2011 IEEE 27th International Conference on Data Engineering</btitle><stitle>ICDE</stitle><date>2011-04</date><risdate>2011</risdate><spage>912</spage><epage>923</epage><pages>912-923</pages><issn>1063-6382</issn><eissn>2375-026X</eissn><isbn>9781424489596</isbn><isbn>1424489598</isbn><eisbn>1424489601</eisbn><eisbn>142448958X</eisbn><eisbn>9781424489589</eisbn><eisbn>9781424489602</eisbn><abstract>Social networks are vulnerable to various attacks such as spam emails, viral marketing and the such. In this paper we develop a spectrum based detection framework to discover the perpetrators of these attacks. In particular, we focus on Random Link Attacks (RLAs) in which the malicious user creates multiple false identities and interactions among those identities to later proceed to attack the regular members of the network. We show that RLA attackers can be filtered by using their spectral coordinate characteristics, which are hard to hide even after the efforts by the attackers of resembling as much as possible the rest of the network. Experimental results show that our technique is very effective in detecting those attackers and outperforms techniques previously published.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2011.5767910</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6382
ispartof 2011 IEEE 27th International Conference on Data Engineering, 2011, p.912-923
issn 1063-6382
2375-026X
language eng
recordid cdi_ieee_primary_5767910
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Blogs
Collaboration
Eigenvalues and eigenfunctions
Electronic mail
Social network services
Topology
title Spectrum based fraud detection in social networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spectrum%20based%20fraud%20detection%20in%20social%20networks&rft.btitle=2011%20IEEE%2027th%20International%20Conference%20on%20Data%20Engineering&rft.au=Ying,%20Xiaowei&rft.date=2011-04&rft.spage=912&rft.epage=923&rft.pages=912-923&rft.issn=1063-6382&rft.eissn=2375-026X&rft.isbn=9781424489596&rft.isbn_list=1424489598&rft_id=info:doi/10.1109/ICDE.2011.5767910&rft_dat=%3Cieee_6IE%3E5767910%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424489601&rft.eisbn_list=142448958X&rft.eisbn_list=9781424489589&rft.eisbn_list=9781424489602&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5767910&rfr_iscdi=true