CubeLSI: An effective and efficient method for searching resources in social tagging systems

In a social tagging system, resources (such as photos, video and web pages) are associated with tags. These tags allow the resources to be effectively searched through tag-based keyword matching using traditional IR techniques. We note that in many such systems, tags of a resource are often assigned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bin Bi, Sau Dan Lee, Ben Kao, Cheng, R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 27
container_title
container_volume
creator Bin Bi
Sau Dan Lee
Ben Kao
Cheng, R
description In a social tagging system, resources (such as photos, video and web pages) are associated with tags. These tags allow the resources to be effectively searched through tag-based keyword matching using traditional IR techniques. We note that in many such systems, tags of a resource are often assigned by a diverse audience of causal users (taggers). This leads to two issues that gravely affect the effectiveness of resource retrieval: (1) Noise: tags are picked from an uncontrolled vocabulary and are assigned by untrained taggers. The tags are thus noisy features in resource retrieval. (2) A multitude of aspects: different taggers focus on different aspects of a resource. Representing a resource using a flattened bag of tags ignores this important diversity of taggers. To improve the effectiveness of resource retrieval in social tagging systems, we propose CubeLSI - a technique that extends traditional LSI to include taggers as another dimension of feature space of resources. We compare CubeLSI against a number of other tag-based retrieval models and show that CubeLSI significantly outperforms the other models in terms of retrieval accuracy. We also prove two interesting theorems that allow CubeLSI to be very efficiently computed despite the much enlarged feature space it employs.
doi_str_mv 10.1109/ICDE.2011.5767863
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5767863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5767863</ieee_id><sourcerecordid>5767863</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-b91c0ecc5475b68f804db2f84e4a4c5417693cfa76981ca9e5853a324aeab63d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhOMXWOv-APGSP7A1b7428Va2VQsLHlTwIJRs9k0baXdlsxX6722xc3mYGZjDEHIHbALA7MOinM0nnAFMVKELo8UZuQHJpTRWMzgnIy4KlTOuPy9IZgtz6pTVl2QETItcC8OvSZbSNzvISgDFRuSr3NVYvS0e6bSlGAL6If4idW1zdNFHbAe6xWHdNTR0PU3oer-O7Yr2mLpd7zHR2NLU-eg2dHCr1bFL-zTgNt2Sq-A2CbMTx-Tjaf5evuTV6_OinFZ55GCGvLbgGXqvZKFqbYJhsql5MBKlk4cUCm2FD-4AA95ZVEYJJ7h06GotGjEm9_-7ERGXP33cun6_PB0l_gBLHlh0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CubeLSI: An effective and efficient method for searching resources in social tagging systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bin Bi ; Sau Dan Lee ; Ben Kao ; Cheng, R</creator><creatorcontrib>Bin Bi ; Sau Dan Lee ; Ben Kao ; Cheng, R</creatorcontrib><description>In a social tagging system, resources (such as photos, video and web pages) are associated with tags. These tags allow the resources to be effectively searched through tag-based keyword matching using traditional IR techniques. We note that in many such systems, tags of a resource are often assigned by a diverse audience of causal users (taggers). This leads to two issues that gravely affect the effectiveness of resource retrieval: (1) Noise: tags are picked from an uncontrolled vocabulary and are assigned by untrained taggers. The tags are thus noisy features in resource retrieval. (2) A multitude of aspects: different taggers focus on different aspects of a resource. Representing a resource using a flattened bag of tags ignores this important diversity of taggers. To improve the effectiveness of resource retrieval in social tagging systems, we propose CubeLSI - a technique that extends traditional LSI to include taggers as another dimension of feature space of resources. We compare CubeLSI against a number of other tag-based retrieval models and show that CubeLSI significantly outperforms the other models in terms of retrieval accuracy. We also prove two interesting theorems that allow CubeLSI to be very efficiently computed despite the much enlarged feature space it employs.</description><identifier>ISSN: 1063-6382</identifier><identifier>ISBN: 9781424489596</identifier><identifier>ISBN: 1424489598</identifier><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 1424489601</identifier><identifier>EISBN: 142448958X</identifier><identifier>EISBN: 9781424489589</identifier><identifier>EISBN: 9781424489602</identifier><identifier>DOI: 10.1109/ICDE.2011.5767863</identifier><language>eng</language><publisher>IEEE</publisher><subject>Large scale integration ; Matrix decomposition ; Portable computers ; Semantics ; Tagging ; Tensile stress ; Vocabulary</subject><ispartof>2011 IEEE 27th International Conference on Data Engineering, 2011, p.27-38</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5767863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5767863$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bin Bi</creatorcontrib><creatorcontrib>Sau Dan Lee</creatorcontrib><creatorcontrib>Ben Kao</creatorcontrib><creatorcontrib>Cheng, R</creatorcontrib><title>CubeLSI: An effective and efficient method for searching resources in social tagging systems</title><title>2011 IEEE 27th International Conference on Data Engineering</title><addtitle>ICDE</addtitle><description>In a social tagging system, resources (such as photos, video and web pages) are associated with tags. These tags allow the resources to be effectively searched through tag-based keyword matching using traditional IR techniques. We note that in many such systems, tags of a resource are often assigned by a diverse audience of causal users (taggers). This leads to two issues that gravely affect the effectiveness of resource retrieval: (1) Noise: tags are picked from an uncontrolled vocabulary and are assigned by untrained taggers. The tags are thus noisy features in resource retrieval. (2) A multitude of aspects: different taggers focus on different aspects of a resource. Representing a resource using a flattened bag of tags ignores this important diversity of taggers. To improve the effectiveness of resource retrieval in social tagging systems, we propose CubeLSI - a technique that extends traditional LSI to include taggers as another dimension of feature space of resources. We compare CubeLSI against a number of other tag-based retrieval models and show that CubeLSI significantly outperforms the other models in terms of retrieval accuracy. We also prove two interesting theorems that allow CubeLSI to be very efficiently computed despite the much enlarged feature space it employs.</description><subject>Large scale integration</subject><subject>Matrix decomposition</subject><subject>Portable computers</subject><subject>Semantics</subject><subject>Tagging</subject><subject>Tensile stress</subject><subject>Vocabulary</subject><issn>1063-6382</issn><issn>2375-026X</issn><isbn>9781424489596</isbn><isbn>1424489598</isbn><isbn>1424489601</isbn><isbn>142448958X</isbn><isbn>9781424489589</isbn><isbn>9781424489602</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LAzEYhOMXWOv-APGSP7A1b7428Va2VQsLHlTwIJRs9k0baXdlsxX6722xc3mYGZjDEHIHbALA7MOinM0nnAFMVKELo8UZuQHJpTRWMzgnIy4KlTOuPy9IZgtz6pTVl2QETItcC8OvSZbSNzvISgDFRuSr3NVYvS0e6bSlGAL6If4idW1zdNFHbAe6xWHdNTR0PU3oer-O7Yr2mLpd7zHR2NLU-eg2dHCr1bFL-zTgNt2Sq-A2CbMTx-Tjaf5evuTV6_OinFZ55GCGvLbgGXqvZKFqbYJhsql5MBKlk4cUCm2FD-4AA95ZVEYJJ7h06GotGjEm9_-7ERGXP33cun6_PB0l_gBLHlh0</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Bin Bi</creator><creator>Sau Dan Lee</creator><creator>Ben Kao</creator><creator>Cheng, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>CubeLSI: An effective and efficient method for searching resources in social tagging systems</title><author>Bin Bi ; Sau Dan Lee ; Ben Kao ; Cheng, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-b91c0ecc5475b68f804db2f84e4a4c5417693cfa76981ca9e5853a324aeab63d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Large scale integration</topic><topic>Matrix decomposition</topic><topic>Portable computers</topic><topic>Semantics</topic><topic>Tagging</topic><topic>Tensile stress</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Bin Bi</creatorcontrib><creatorcontrib>Sau Dan Lee</creatorcontrib><creatorcontrib>Ben Kao</creatorcontrib><creatorcontrib>Cheng, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bin Bi</au><au>Sau Dan Lee</au><au>Ben Kao</au><au>Cheng, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CubeLSI: An effective and efficient method for searching resources in social tagging systems</atitle><btitle>2011 IEEE 27th International Conference on Data Engineering</btitle><stitle>ICDE</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>27</spage><epage>38</epage><pages>27-38</pages><issn>1063-6382</issn><eissn>2375-026X</eissn><isbn>9781424489596</isbn><isbn>1424489598</isbn><eisbn>1424489601</eisbn><eisbn>142448958X</eisbn><eisbn>9781424489589</eisbn><eisbn>9781424489602</eisbn><abstract>In a social tagging system, resources (such as photos, video and web pages) are associated with tags. These tags allow the resources to be effectively searched through tag-based keyword matching using traditional IR techniques. We note that in many such systems, tags of a resource are often assigned by a diverse audience of causal users (taggers). This leads to two issues that gravely affect the effectiveness of resource retrieval: (1) Noise: tags are picked from an uncontrolled vocabulary and are assigned by untrained taggers. The tags are thus noisy features in resource retrieval. (2) A multitude of aspects: different taggers focus on different aspects of a resource. Representing a resource using a flattened bag of tags ignores this important diversity of taggers. To improve the effectiveness of resource retrieval in social tagging systems, we propose CubeLSI - a technique that extends traditional LSI to include taggers as another dimension of feature space of resources. We compare CubeLSI against a number of other tag-based retrieval models and show that CubeLSI significantly outperforms the other models in terms of retrieval accuracy. We also prove two interesting theorems that allow CubeLSI to be very efficiently computed despite the much enlarged feature space it employs.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2011.5767863</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6382
ispartof 2011 IEEE 27th International Conference on Data Engineering, 2011, p.27-38
issn 1063-6382
2375-026X
language eng
recordid cdi_ieee_primary_5767863
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Large scale integration
Matrix decomposition
Portable computers
Semantics
Tagging
Tensile stress
Vocabulary
title CubeLSI: An effective and efficient method for searching resources in social tagging systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CubeLSI:%20An%20effective%20and%20efficient%20method%20for%20searching%20resources%20in%20social%20tagging%20systems&rft.btitle=2011%20IEEE%2027th%20International%20Conference%20on%20Data%20Engineering&rft.au=Bin%20Bi&rft.date=2011-01-01&rft.spage=27&rft.epage=38&rft.pages=27-38&rft.issn=1063-6382&rft.eissn=2375-026X&rft.isbn=9781424489596&rft.isbn_list=1424489598&rft_id=info:doi/10.1109/ICDE.2011.5767863&rft_dat=%3Cieee_6IE%3E5767863%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424489601&rft.eisbn_list=142448958X&rft.eisbn_list=9781424489589&rft.eisbn_list=9781424489602&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5767863&rfr_iscdi=true