CubeLSI: An effective and efficient method for searching resources in social tagging systems
In a social tagging system, resources (such as photos, video and web pages) are associated with tags. These tags allow the resources to be effectively searched through tag-based keyword matching using traditional IR techniques. We note that in many such systems, tags of a resource are often assigned...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | |
container_start_page | 27 |
container_title | |
container_volume | |
creator | Bin Bi Sau Dan Lee Ben Kao Cheng, R |
description | In a social tagging system, resources (such as photos, video and web pages) are associated with tags. These tags allow the resources to be effectively searched through tag-based keyword matching using traditional IR techniques. We note that in many such systems, tags of a resource are often assigned by a diverse audience of causal users (taggers). This leads to two issues that gravely affect the effectiveness of resource retrieval: (1) Noise: tags are picked from an uncontrolled vocabulary and are assigned by untrained taggers. The tags are thus noisy features in resource retrieval. (2) A multitude of aspects: different taggers focus on different aspects of a resource. Representing a resource using a flattened bag of tags ignores this important diversity of taggers. To improve the effectiveness of resource retrieval in social tagging systems, we propose CubeLSI - a technique that extends traditional LSI to include taggers as another dimension of feature space of resources. We compare CubeLSI against a number of other tag-based retrieval models and show that CubeLSI significantly outperforms the other models in terms of retrieval accuracy. We also prove two interesting theorems that allow CubeLSI to be very efficiently computed despite the much enlarged feature space it employs. |
doi_str_mv | 10.1109/ICDE.2011.5767863 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5767863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5767863</ieee_id><sourcerecordid>5767863</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-b91c0ecc5475b68f804db2f84e4a4c5417693cfa76981ca9e5853a324aeab63d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhOMXWOv-APGSP7A1b7428Va2VQsLHlTwIJRs9k0baXdlsxX6722xc3mYGZjDEHIHbALA7MOinM0nnAFMVKELo8UZuQHJpTRWMzgnIy4KlTOuPy9IZgtz6pTVl2QETItcC8OvSZbSNzvISgDFRuSr3NVYvS0e6bSlGAL6If4idW1zdNFHbAe6xWHdNTR0PU3oer-O7Yr2mLpd7zHR2NLU-eg2dHCr1bFL-zTgNt2Sq-A2CbMTx-Tjaf5evuTV6_OinFZ55GCGvLbgGXqvZKFqbYJhsql5MBKlk4cUCm2FD-4AA95ZVEYJJ7h06GotGjEm9_-7ERGXP33cun6_PB0l_gBLHlh0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CubeLSI: An effective and efficient method for searching resources in social tagging systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bin Bi ; Sau Dan Lee ; Ben Kao ; Cheng, R</creator><creatorcontrib>Bin Bi ; Sau Dan Lee ; Ben Kao ; Cheng, R</creatorcontrib><description>In a social tagging system, resources (such as photos, video and web pages) are associated with tags. These tags allow the resources to be effectively searched through tag-based keyword matching using traditional IR techniques. We note that in many such systems, tags of a resource are often assigned by a diverse audience of causal users (taggers). This leads to two issues that gravely affect the effectiveness of resource retrieval: (1) Noise: tags are picked from an uncontrolled vocabulary and are assigned by untrained taggers. The tags are thus noisy features in resource retrieval. (2) A multitude of aspects: different taggers focus on different aspects of a resource. Representing a resource using a flattened bag of tags ignores this important diversity of taggers. To improve the effectiveness of resource retrieval in social tagging systems, we propose CubeLSI - a technique that extends traditional LSI to include taggers as another dimension of feature space of resources. We compare CubeLSI against a number of other tag-based retrieval models and show that CubeLSI significantly outperforms the other models in terms of retrieval accuracy. We also prove two interesting theorems that allow CubeLSI to be very efficiently computed despite the much enlarged feature space it employs.</description><identifier>ISSN: 1063-6382</identifier><identifier>ISBN: 9781424489596</identifier><identifier>ISBN: 1424489598</identifier><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 1424489601</identifier><identifier>EISBN: 142448958X</identifier><identifier>EISBN: 9781424489589</identifier><identifier>EISBN: 9781424489602</identifier><identifier>DOI: 10.1109/ICDE.2011.5767863</identifier><language>eng</language><publisher>IEEE</publisher><subject>Large scale integration ; Matrix decomposition ; Portable computers ; Semantics ; Tagging ; Tensile stress ; Vocabulary</subject><ispartof>2011 IEEE 27th International Conference on Data Engineering, 2011, p.27-38</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5767863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5767863$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bin Bi</creatorcontrib><creatorcontrib>Sau Dan Lee</creatorcontrib><creatorcontrib>Ben Kao</creatorcontrib><creatorcontrib>Cheng, R</creatorcontrib><title>CubeLSI: An effective and efficient method for searching resources in social tagging systems</title><title>2011 IEEE 27th International Conference on Data Engineering</title><addtitle>ICDE</addtitle><description>In a social tagging system, resources (such as photos, video and web pages) are associated with tags. These tags allow the resources to be effectively searched through tag-based keyword matching using traditional IR techniques. We note that in many such systems, tags of a resource are often assigned by a diverse audience of causal users (taggers). This leads to two issues that gravely affect the effectiveness of resource retrieval: (1) Noise: tags are picked from an uncontrolled vocabulary and are assigned by untrained taggers. The tags are thus noisy features in resource retrieval. (2) A multitude of aspects: different taggers focus on different aspects of a resource. Representing a resource using a flattened bag of tags ignores this important diversity of taggers. To improve the effectiveness of resource retrieval in social tagging systems, we propose CubeLSI - a technique that extends traditional LSI to include taggers as another dimension of feature space of resources. We compare CubeLSI against a number of other tag-based retrieval models and show that CubeLSI significantly outperforms the other models in terms of retrieval accuracy. We also prove two interesting theorems that allow CubeLSI to be very efficiently computed despite the much enlarged feature space it employs.</description><subject>Large scale integration</subject><subject>Matrix decomposition</subject><subject>Portable computers</subject><subject>Semantics</subject><subject>Tagging</subject><subject>Tensile stress</subject><subject>Vocabulary</subject><issn>1063-6382</issn><issn>2375-026X</issn><isbn>9781424489596</isbn><isbn>1424489598</isbn><isbn>1424489601</isbn><isbn>142448958X</isbn><isbn>9781424489589</isbn><isbn>9781424489602</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LAzEYhOMXWOv-APGSP7A1b7428Va2VQsLHlTwIJRs9k0baXdlsxX6722xc3mYGZjDEHIHbALA7MOinM0nnAFMVKELo8UZuQHJpTRWMzgnIy4KlTOuPy9IZgtz6pTVl2QETItcC8OvSZbSNzvISgDFRuSr3NVYvS0e6bSlGAL6If4idW1zdNFHbAe6xWHdNTR0PU3oer-O7Yr2mLpd7zHR2NLU-eg2dHCr1bFL-zTgNt2Sq-A2CbMTx-Tjaf5evuTV6_OinFZ55GCGvLbgGXqvZKFqbYJhsql5MBKlk4cUCm2FD-4AA95ZVEYJJ7h06GotGjEm9_-7ERGXP33cun6_PB0l_gBLHlh0</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Bin Bi</creator><creator>Sau Dan Lee</creator><creator>Ben Kao</creator><creator>Cheng, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>CubeLSI: An effective and efficient method for searching resources in social tagging systems</title><author>Bin Bi ; Sau Dan Lee ; Ben Kao ; Cheng, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-b91c0ecc5475b68f804db2f84e4a4c5417693cfa76981ca9e5853a324aeab63d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Large scale integration</topic><topic>Matrix decomposition</topic><topic>Portable computers</topic><topic>Semantics</topic><topic>Tagging</topic><topic>Tensile stress</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Bin Bi</creatorcontrib><creatorcontrib>Sau Dan Lee</creatorcontrib><creatorcontrib>Ben Kao</creatorcontrib><creatorcontrib>Cheng, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bin Bi</au><au>Sau Dan Lee</au><au>Ben Kao</au><au>Cheng, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CubeLSI: An effective and efficient method for searching resources in social tagging systems</atitle><btitle>2011 IEEE 27th International Conference on Data Engineering</btitle><stitle>ICDE</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>27</spage><epage>38</epage><pages>27-38</pages><issn>1063-6382</issn><eissn>2375-026X</eissn><isbn>9781424489596</isbn><isbn>1424489598</isbn><eisbn>1424489601</eisbn><eisbn>142448958X</eisbn><eisbn>9781424489589</eisbn><eisbn>9781424489602</eisbn><abstract>In a social tagging system, resources (such as photos, video and web pages) are associated with tags. These tags allow the resources to be effectively searched through tag-based keyword matching using traditional IR techniques. We note that in many such systems, tags of a resource are often assigned by a diverse audience of causal users (taggers). This leads to two issues that gravely affect the effectiveness of resource retrieval: (1) Noise: tags are picked from an uncontrolled vocabulary and are assigned by untrained taggers. The tags are thus noisy features in resource retrieval. (2) A multitude of aspects: different taggers focus on different aspects of a resource. Representing a resource using a flattened bag of tags ignores this important diversity of taggers. To improve the effectiveness of resource retrieval in social tagging systems, we propose CubeLSI - a technique that extends traditional LSI to include taggers as another dimension of feature space of resources. We compare CubeLSI against a number of other tag-based retrieval models and show that CubeLSI significantly outperforms the other models in terms of retrieval accuracy. We also prove two interesting theorems that allow CubeLSI to be very efficiently computed despite the much enlarged feature space it employs.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2011.5767863</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6382 |
ispartof | 2011 IEEE 27th International Conference on Data Engineering, 2011, p.27-38 |
issn | 1063-6382 2375-026X |
language | eng |
recordid | cdi_ieee_primary_5767863 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Large scale integration Matrix decomposition Portable computers Semantics Tagging Tensile stress Vocabulary |
title | CubeLSI: An effective and efficient method for searching resources in social tagging systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CubeLSI:%20An%20effective%20and%20efficient%20method%20for%20searching%20resources%20in%20social%20tagging%20systems&rft.btitle=2011%20IEEE%2027th%20International%20Conference%20on%20Data%20Engineering&rft.au=Bin%20Bi&rft.date=2011-01-01&rft.spage=27&rft.epage=38&rft.pages=27-38&rft.issn=1063-6382&rft.eissn=2375-026X&rft.isbn=9781424489596&rft.isbn_list=1424489598&rft_id=info:doi/10.1109/ICDE.2011.5767863&rft_dat=%3Cieee_6IE%3E5767863%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424489601&rft.eisbn_list=142448958X&rft.eisbn_list=9781424489589&rft.eisbn_list=9781424489602&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5767863&rfr_iscdi=true |