Stable adaptive control of a multivariable nonlinear process
In this paper, we apply an adaptive control algorithm to a nonlinear multivariable process. Such controller is based on the multiple models approach. As the design of the control law requires the knowledge of the dynamical model of the system, we deal firstly with the identification of the system pa...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Safa, C Said, S H M'Sahli, F |
description | In this paper, we apply an adaptive control algorithm to a nonlinear multivariable process. Such controller is based on the multiple models approach. As the design of the control law requires the knowledge of the dynamical model of the system, we deal firstly with the identification of the system parameters using the recursive least squares and the retro propagation of the gradient algorithms. Then, we focus on the application of the multiple model approach. So, we decomposed the nonlinear model of the system in sub-systems and we adopted a proper criterion of commutation between the various models. The global control consists in the interpolation between the elementary control extracted from each model. The resulting controller is applied to a multivariable process to solve a tracking problem of the water levels into a twin tank process. The control strategy ensures the stability of the closed loop system and guarantees a good behavior when tracking a reference trajectory. |
doi_str_mv | 10.1109/SSD.2011.5767463 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5767463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5767463</ieee_id><sourcerecordid>5767463</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-91700bfe549497b0770af9ddd3caec2a5da590175a434e0516ed7dccb87a8003</originalsourceid><addsrcrecordid>eNpVT01LxDAUjIigrL0LXvIHWl-arwa8yKqrsOCh3pfX5BUi3bYkVfDfW3QvzmWYYRhmGLsRUAkB7q5tH6sahKi0NVYZecYKZxuhtLWgRC3P_2kJl6zI-QNWGOOMllfsvl2wG4hjwHmJX8T9NC5pGvjUc-THz2E1McXfzDiNQxwJE5_T5Cnna3bR45CpOPGGtc9P79uXcv-2e90-7MvoYCmdsABdT1o55WwH6xbsXQhBeiRfow6oHQirUUlFoIWhYIP3XWOxAZAbdvvXGonoMKd4xPR9OD2WP4BcSWk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stable adaptive control of a multivariable nonlinear process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Safa, C ; Said, S H ; M'Sahli, F</creator><creatorcontrib>Safa, C ; Said, S H ; M'Sahli, F</creatorcontrib><description>In this paper, we apply an adaptive control algorithm to a nonlinear multivariable process. Such controller is based on the multiple models approach. As the design of the control law requires the knowledge of the dynamical model of the system, we deal firstly with the identification of the system parameters using the recursive least squares and the retro propagation of the gradient algorithms. Then, we focus on the application of the multiple model approach. So, we decomposed the nonlinear model of the system in sub-systems and we adopted a proper criterion of commutation between the various models. The global control consists in the interpolation between the elementary control extracted from each model. The resulting controller is applied to a multivariable process to solve a tracking problem of the water levels into a twin tank process. The control strategy ensures the stability of the closed loop system and guarantees a good behavior when tracking a reference trajectory.</description><identifier>ISBN: 9781457704130</identifier><identifier>ISBN: 1457704137</identifier><identifier>EISBN: 9781457704123</identifier><identifier>EISBN: 1457704129</identifier><identifier>EISBN: 1457704110</identifier><identifier>EISBN: 9781457704116</identifier><identifier>DOI: 10.1109/SSD.2011.5767463</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Adaptive control ; Artificial neural networks ; Equations ; Mathematical model ; multiple model ; neural networks ; Process control ; Switching ; twin tank process ; Vectors</subject><ispartof>Eighth International Multi-Conference on Systems, Signals & Devices, 2011, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5767463$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5767463$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Safa, C</creatorcontrib><creatorcontrib>Said, S H</creatorcontrib><creatorcontrib>M'Sahli, F</creatorcontrib><title>Stable adaptive control of a multivariable nonlinear process</title><title>Eighth International Multi-Conference on Systems, Signals & Devices</title><addtitle>SSD</addtitle><description>In this paper, we apply an adaptive control algorithm to a nonlinear multivariable process. Such controller is based on the multiple models approach. As the design of the control law requires the knowledge of the dynamical model of the system, we deal firstly with the identification of the system parameters using the recursive least squares and the retro propagation of the gradient algorithms. Then, we focus on the application of the multiple model approach. So, we decomposed the nonlinear model of the system in sub-systems and we adopted a proper criterion of commutation between the various models. The global control consists in the interpolation between the elementary control extracted from each model. The resulting controller is applied to a multivariable process to solve a tracking problem of the water levels into a twin tank process. The control strategy ensures the stability of the closed loop system and guarantees a good behavior when tracking a reference trajectory.</description><subject>Adaptation model</subject><subject>Adaptive control</subject><subject>Artificial neural networks</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>multiple model</subject><subject>neural networks</subject><subject>Process control</subject><subject>Switching</subject><subject>twin tank process</subject><subject>Vectors</subject><isbn>9781457704130</isbn><isbn>1457704137</isbn><isbn>9781457704123</isbn><isbn>1457704129</isbn><isbn>1457704110</isbn><isbn>9781457704116</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT01LxDAUjIigrL0LXvIHWl-arwa8yKqrsOCh3pfX5BUi3bYkVfDfW3QvzmWYYRhmGLsRUAkB7q5tH6sahKi0NVYZecYKZxuhtLWgRC3P_2kJl6zI-QNWGOOMllfsvl2wG4hjwHmJX8T9NC5pGvjUc-THz2E1McXfzDiNQxwJE5_T5Cnna3bR45CpOPGGtc9P79uXcv-2e90-7MvoYCmdsABdT1o55WwH6xbsXQhBeiRfow6oHQirUUlFoIWhYIP3XWOxAZAbdvvXGonoMKd4xPR9OD2WP4BcSWk</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Safa, C</creator><creator>Said, S H</creator><creator>M'Sahli, F</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>Stable adaptive control of a multivariable nonlinear process</title><author>Safa, C ; Said, S H ; M'Sahli, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-91700bfe549497b0770af9ddd3caec2a5da590175a434e0516ed7dccb87a8003</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation model</topic><topic>Adaptive control</topic><topic>Artificial neural networks</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>multiple model</topic><topic>neural networks</topic><topic>Process control</topic><topic>Switching</topic><topic>twin tank process</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Safa, C</creatorcontrib><creatorcontrib>Said, S H</creatorcontrib><creatorcontrib>M'Sahli, F</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Safa, C</au><au>Said, S H</au><au>M'Sahli, F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stable adaptive control of a multivariable nonlinear process</atitle><btitle>Eighth International Multi-Conference on Systems, Signals & Devices</btitle><stitle>SSD</stitle><date>2011-03</date><risdate>2011</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781457704130</isbn><isbn>1457704137</isbn><eisbn>9781457704123</eisbn><eisbn>1457704129</eisbn><eisbn>1457704110</eisbn><eisbn>9781457704116</eisbn><abstract>In this paper, we apply an adaptive control algorithm to a nonlinear multivariable process. Such controller is based on the multiple models approach. As the design of the control law requires the knowledge of the dynamical model of the system, we deal firstly with the identification of the system parameters using the recursive least squares and the retro propagation of the gradient algorithms. Then, we focus on the application of the multiple model approach. So, we decomposed the nonlinear model of the system in sub-systems and we adopted a proper criterion of commutation between the various models. The global control consists in the interpolation between the elementary control extracted from each model. The resulting controller is applied to a multivariable process to solve a tracking problem of the water levels into a twin tank process. The control strategy ensures the stability of the closed loop system and guarantees a good behavior when tracking a reference trajectory.</abstract><pub>IEEE</pub><doi>10.1109/SSD.2011.5767463</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457704130 |
ispartof | Eighth International Multi-Conference on Systems, Signals & Devices, 2011, p.1-7 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5767463 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation model Adaptive control Artificial neural networks Equations Mathematical model multiple model neural networks Process control Switching twin tank process Vectors |
title | Stable adaptive control of a multivariable nonlinear process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stable%20adaptive%20control%20of%20a%20multivariable%20nonlinear%20process&rft.btitle=Eighth%20International%20Multi-Conference%20on%20Systems,%20Signals%20&%20Devices&rft.au=Safa,%20C&rft.date=2011-03&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781457704130&rft.isbn_list=1457704137&rft_id=info:doi/10.1109/SSD.2011.5767463&rft_dat=%3Cieee_6IE%3E5767463%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457704123&rft.eisbn_list=1457704129&rft.eisbn_list=1457704110&rft.eisbn_list=9781457704116&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5767463&rfr_iscdi=true |