Stable adaptive control of a multivariable nonlinear process

In this paper, we apply an adaptive control algorithm to a nonlinear multivariable process. Such controller is based on the multiple models approach. As the design of the control law requires the knowledge of the dynamical model of the system, we deal firstly with the identification of the system pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Safa, C, Said, S H, M'Sahli, F
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Safa, C
Said, S H
M'Sahli, F
description In this paper, we apply an adaptive control algorithm to a nonlinear multivariable process. Such controller is based on the multiple models approach. As the design of the control law requires the knowledge of the dynamical model of the system, we deal firstly with the identification of the system parameters using the recursive least squares and the retro propagation of the gradient algorithms. Then, we focus on the application of the multiple model approach. So, we decomposed the nonlinear model of the system in sub-systems and we adopted a proper criterion of commutation between the various models. The global control consists in the interpolation between the elementary control extracted from each model. The resulting controller is applied to a multivariable process to solve a tracking problem of the water levels into a twin tank process. The control strategy ensures the stability of the closed loop system and guarantees a good behavior when tracking a reference trajectory.
doi_str_mv 10.1109/SSD.2011.5767463
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5767463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5767463</ieee_id><sourcerecordid>5767463</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-91700bfe549497b0770af9ddd3caec2a5da590175a434e0516ed7dccb87a8003</originalsourceid><addsrcrecordid>eNpVT01LxDAUjIigrL0LXvIHWl-arwa8yKqrsOCh3pfX5BUi3bYkVfDfW3QvzmWYYRhmGLsRUAkB7q5tH6sahKi0NVYZecYKZxuhtLWgRC3P_2kJl6zI-QNWGOOMllfsvl2wG4hjwHmJX8T9NC5pGvjUc-THz2E1McXfzDiNQxwJE5_T5Cnna3bR45CpOPGGtc9P79uXcv-2e90-7MvoYCmdsABdT1o55WwH6xbsXQhBeiRfow6oHQirUUlFoIWhYIP3XWOxAZAbdvvXGonoMKd4xPR9OD2WP4BcSWk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stable adaptive control of a multivariable nonlinear process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Safa, C ; Said, S H ; M'Sahli, F</creator><creatorcontrib>Safa, C ; Said, S H ; M'Sahli, F</creatorcontrib><description>In this paper, we apply an adaptive control algorithm to a nonlinear multivariable process. Such controller is based on the multiple models approach. As the design of the control law requires the knowledge of the dynamical model of the system, we deal firstly with the identification of the system parameters using the recursive least squares and the retro propagation of the gradient algorithms. Then, we focus on the application of the multiple model approach. So, we decomposed the nonlinear model of the system in sub-systems and we adopted a proper criterion of commutation between the various models. The global control consists in the interpolation between the elementary control extracted from each model. The resulting controller is applied to a multivariable process to solve a tracking problem of the water levels into a twin tank process. The control strategy ensures the stability of the closed loop system and guarantees a good behavior when tracking a reference trajectory.</description><identifier>ISBN: 9781457704130</identifier><identifier>ISBN: 1457704137</identifier><identifier>EISBN: 9781457704123</identifier><identifier>EISBN: 1457704129</identifier><identifier>EISBN: 1457704110</identifier><identifier>EISBN: 9781457704116</identifier><identifier>DOI: 10.1109/SSD.2011.5767463</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Adaptive control ; Artificial neural networks ; Equations ; Mathematical model ; multiple model ; neural networks ; Process control ; Switching ; twin tank process ; Vectors</subject><ispartof>Eighth International Multi-Conference on Systems, Signals &amp; Devices, 2011, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5767463$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5767463$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Safa, C</creatorcontrib><creatorcontrib>Said, S H</creatorcontrib><creatorcontrib>M'Sahli, F</creatorcontrib><title>Stable adaptive control of a multivariable nonlinear process</title><title>Eighth International Multi-Conference on Systems, Signals &amp; Devices</title><addtitle>SSD</addtitle><description>In this paper, we apply an adaptive control algorithm to a nonlinear multivariable process. Such controller is based on the multiple models approach. As the design of the control law requires the knowledge of the dynamical model of the system, we deal firstly with the identification of the system parameters using the recursive least squares and the retro propagation of the gradient algorithms. Then, we focus on the application of the multiple model approach. So, we decomposed the nonlinear model of the system in sub-systems and we adopted a proper criterion of commutation between the various models. The global control consists in the interpolation between the elementary control extracted from each model. The resulting controller is applied to a multivariable process to solve a tracking problem of the water levels into a twin tank process. The control strategy ensures the stability of the closed loop system and guarantees a good behavior when tracking a reference trajectory.</description><subject>Adaptation model</subject><subject>Adaptive control</subject><subject>Artificial neural networks</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>multiple model</subject><subject>neural networks</subject><subject>Process control</subject><subject>Switching</subject><subject>twin tank process</subject><subject>Vectors</subject><isbn>9781457704130</isbn><isbn>1457704137</isbn><isbn>9781457704123</isbn><isbn>1457704129</isbn><isbn>1457704110</isbn><isbn>9781457704116</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT01LxDAUjIigrL0LXvIHWl-arwa8yKqrsOCh3pfX5BUi3bYkVfDfW3QvzmWYYRhmGLsRUAkB7q5tH6sahKi0NVYZecYKZxuhtLWgRC3P_2kJl6zI-QNWGOOMllfsvl2wG4hjwHmJX8T9NC5pGvjUc-THz2E1McXfzDiNQxwJE5_T5Cnna3bR45CpOPGGtc9P79uXcv-2e90-7MvoYCmdsABdT1o55WwH6xbsXQhBeiRfow6oHQirUUlFoIWhYIP3XWOxAZAbdvvXGonoMKd4xPR9OD2WP4BcSWk</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Safa, C</creator><creator>Said, S H</creator><creator>M'Sahli, F</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>Stable adaptive control of a multivariable nonlinear process</title><author>Safa, C ; Said, S H ; M'Sahli, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-91700bfe549497b0770af9ddd3caec2a5da590175a434e0516ed7dccb87a8003</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation model</topic><topic>Adaptive control</topic><topic>Artificial neural networks</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>multiple model</topic><topic>neural networks</topic><topic>Process control</topic><topic>Switching</topic><topic>twin tank process</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Safa, C</creatorcontrib><creatorcontrib>Said, S H</creatorcontrib><creatorcontrib>M'Sahli, F</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Safa, C</au><au>Said, S H</au><au>M'Sahli, F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stable adaptive control of a multivariable nonlinear process</atitle><btitle>Eighth International Multi-Conference on Systems, Signals &amp; Devices</btitle><stitle>SSD</stitle><date>2011-03</date><risdate>2011</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781457704130</isbn><isbn>1457704137</isbn><eisbn>9781457704123</eisbn><eisbn>1457704129</eisbn><eisbn>1457704110</eisbn><eisbn>9781457704116</eisbn><abstract>In this paper, we apply an adaptive control algorithm to a nonlinear multivariable process. Such controller is based on the multiple models approach. As the design of the control law requires the knowledge of the dynamical model of the system, we deal firstly with the identification of the system parameters using the recursive least squares and the retro propagation of the gradient algorithms. Then, we focus on the application of the multiple model approach. So, we decomposed the nonlinear model of the system in sub-systems and we adopted a proper criterion of commutation between the various models. The global control consists in the interpolation between the elementary control extracted from each model. The resulting controller is applied to a multivariable process to solve a tracking problem of the water levels into a twin tank process. The control strategy ensures the stability of the closed loop system and guarantees a good behavior when tracking a reference trajectory.</abstract><pub>IEEE</pub><doi>10.1109/SSD.2011.5767463</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457704130
ispartof Eighth International Multi-Conference on Systems, Signals & Devices, 2011, p.1-7
issn
language eng
recordid cdi_ieee_primary_5767463
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation model
Adaptive control
Artificial neural networks
Equations
Mathematical model
multiple model
neural networks
Process control
Switching
twin tank process
Vectors
title Stable adaptive control of a multivariable nonlinear process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stable%20adaptive%20control%20of%20a%20multivariable%20nonlinear%20process&rft.btitle=Eighth%20International%20Multi-Conference%20on%20Systems,%20Signals%20&%20Devices&rft.au=Safa,%20C&rft.date=2011-03&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781457704130&rft.isbn_list=1457704137&rft_id=info:doi/10.1109/SSD.2011.5767463&rft_dat=%3Cieee_6IE%3E5767463%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457704123&rft.eisbn_list=1457704129&rft.eisbn_list=1457704110&rft.eisbn_list=9781457704116&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5767463&rfr_iscdi=true