Digital Signal Processing Techniques to Improve Time Resolution in Positron Emission Tomography

Coincidence time resolution is one of the most important issues in PET detectors. Improving this resolution is required to increase the noise equivalent count rate (NECR) that reduces the noise in the reconstructed images. The aim of this work is to evaluate the behavior and time resolution of diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2011-08, Vol.58 (4), p.1613-1620
Hauptverfasser: Monzo, J. M., Esteve, R., Lerche, C. W., Ferrando, N., Toledo, J., Aliaga, R. J., Herrero, V., Mora, F. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1620
container_issue 4
container_start_page 1613
container_title IEEE transactions on nuclear science
container_volume 58
creator Monzo, J. M.
Esteve, R.
Lerche, C. W.
Ferrando, N.
Toledo, J.
Aliaga, R. J.
Herrero, V.
Mora, F. J.
description Coincidence time resolution is one of the most important issues in PET detectors. Improving this resolution is required to increase the noise equivalent count rate (NECR) that reduces the noise in the reconstructed images. The aim of this work is to evaluate the behavior and time resolution of different proposed time pick-off algorithms in order to select the best configuration for our PET system. The experimental setup used for this research is composed by two monolithic LSO crystals+PSPMT detectors and an FPGA based PET data acquisition system (DAQ). The acquired signals are sampled using a 12-bit 70 MHz analog to digital converter (ADC) per channel. The setup has no centralized electronics for trigger and event time extraction. Consequently, events for each detector head are processed independently and all the signals are acquired in the same way. Time resolution in this kind of systems can be improved by means of digital processing techniques and using different shapings for the last dynode signals. Four digital algorithms extracting time information from the acquired pulses have been evaluated: (1) Amplitude bipolar digital constant fraction discriminator (BCFD), (2) charge BCFD, (3) interpolated amplitude BCFD and (4) interpolated charge BCFD. Two different architectures for the interpolation algorithm have been used (one-sample and two-sample interpolation), which allow us to work with two different FPGA internal sampling frequencies: 140 MHz and 210 MHz. The results show the importance of selecting the right algorithm and parameters. Time coincidence resolution in our hardware system can be improved by up to 6.9 ns FWHM depending on the chosen digital algorithm programmed on the FPGA. The measurements with our setup reveal that charge based algorithms are less sensitive to signal noise and generate better results than amplitude algorithms. The best configuration achieves a FWHM resolution close to 1.8 ns.
doi_str_mv 10.1109/TNS.2011.2140382
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5763735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5763735</ieee_id><sourcerecordid>919925951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-de066b4e290204e3a138dd299c82e741c0f0bf47e0fbe188fea84048a7af64393</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxS0EEuVjR2KJWJhSzrGd2CMqBSohqGiYLTe9tK6SuNgpEv89jooYmO6d9Hund4-QKwpjSkHdla-LcQaUjjPKgcnsiIyoEDKlopDHZARAZaq4UqfkLIRtXLkAMSL6wa5tb5pkYdddHHPvKgzBduukxGrT2c89hqR3yazdefeFSWlbTN4xuGbfW9cltkvmLtjeRz1tbbRGUbrWrb3Zbb4vyEltmoCXv_OcfDxOy8lz-vL2NJvcv6QVy3mfrhDyfMkxU5ABR2Yok6tVplQlMyw4raCGZc0LhHqJVMoajeTApSlMnXOm2Dm5PdyNKYfIvY5ZKmwa06HbB62oUplQgkby5h-5dXsffx-gXImcwgDBAaq8C8FjrXfetsZ_awp66FvHvvXQt_7tO1quDxaLiH-4KHJWMMF-ALQtfFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916956101</pqid></control><display><type>article</type><title>Digital Signal Processing Techniques to Improve Time Resolution in Positron Emission Tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Monzo, J. M. ; Esteve, R. ; Lerche, C. W. ; Ferrando, N. ; Toledo, J. ; Aliaga, R. J. ; Herrero, V. ; Mora, F. J.</creator><creatorcontrib>Monzo, J. M. ; Esteve, R. ; Lerche, C. W. ; Ferrando, N. ; Toledo, J. ; Aliaga, R. J. ; Herrero, V. ; Mora, F. J.</creatorcontrib><description>Coincidence time resolution is one of the most important issues in PET detectors. Improving this resolution is required to increase the noise equivalent count rate (NECR) that reduces the noise in the reconstructed images. The aim of this work is to evaluate the behavior and time resolution of different proposed time pick-off algorithms in order to select the best configuration for our PET system. The experimental setup used for this research is composed by two monolithic LSO crystals+PSPMT detectors and an FPGA based PET data acquisition system (DAQ). The acquired signals are sampled using a 12-bit 70 MHz analog to digital converter (ADC) per channel. The setup has no centralized electronics for trigger and event time extraction. Consequently, events for each detector head are processed independently and all the signals are acquired in the same way. Time resolution in this kind of systems can be improved by means of digital processing techniques and using different shapings for the last dynode signals. Four digital algorithms extracting time information from the acquired pulses have been evaluated: (1) Amplitude bipolar digital constant fraction discriminator (BCFD), (2) charge BCFD, (3) interpolated amplitude BCFD and (4) interpolated charge BCFD. Two different architectures for the interpolation algorithm have been used (one-sample and two-sample interpolation), which allow us to work with two different FPGA internal sampling frequencies: 140 MHz and 210 MHz. The results show the importance of selecting the right algorithm and parameters. Time coincidence resolution in our hardware system can be improved by up to 6.9 ns FWHM depending on the chosen digital algorithm programmed on the FPGA. The measurements with our setup reveal that charge based algorithms are less sensitive to signal noise and generate better results than amplitude algorithms. The best configuration achieves a FWHM resolution close to 1.8 ns.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2011.2140382</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channels ; Constant fraction discriminator ; Counting ; Crystals ; Data acquisition ; Detectors ; digital signal processing ; Electronics ; Equivalence ; Field programmable gate arrays ; field-programmable gate array (FPGA) ; Interpolation ; Noise ; Positron emission tomography ; positron emission tomography (PET) ; Signal processing algorithms ; Signal resolution ; time resolution ; timing algorithms</subject><ispartof>IEEE transactions on nuclear science, 2011-08, Vol.58 (4), p.1613-1620</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-de066b4e290204e3a138dd299c82e741c0f0bf47e0fbe188fea84048a7af64393</citedby><cites>FETCH-LOGICAL-c364t-de066b4e290204e3a138dd299c82e741c0f0bf47e0fbe188fea84048a7af64393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5763735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5763735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Monzo, J. M.</creatorcontrib><creatorcontrib>Esteve, R.</creatorcontrib><creatorcontrib>Lerche, C. W.</creatorcontrib><creatorcontrib>Ferrando, N.</creatorcontrib><creatorcontrib>Toledo, J.</creatorcontrib><creatorcontrib>Aliaga, R. J.</creatorcontrib><creatorcontrib>Herrero, V.</creatorcontrib><creatorcontrib>Mora, F. J.</creatorcontrib><title>Digital Signal Processing Techniques to Improve Time Resolution in Positron Emission Tomography</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Coincidence time resolution is one of the most important issues in PET detectors. Improving this resolution is required to increase the noise equivalent count rate (NECR) that reduces the noise in the reconstructed images. The aim of this work is to evaluate the behavior and time resolution of different proposed time pick-off algorithms in order to select the best configuration for our PET system. The experimental setup used for this research is composed by two monolithic LSO crystals+PSPMT detectors and an FPGA based PET data acquisition system (DAQ). The acquired signals are sampled using a 12-bit 70 MHz analog to digital converter (ADC) per channel. The setup has no centralized electronics for trigger and event time extraction. Consequently, events for each detector head are processed independently and all the signals are acquired in the same way. Time resolution in this kind of systems can be improved by means of digital processing techniques and using different shapings for the last dynode signals. Four digital algorithms extracting time information from the acquired pulses have been evaluated: (1) Amplitude bipolar digital constant fraction discriminator (BCFD), (2) charge BCFD, (3) interpolated amplitude BCFD and (4) interpolated charge BCFD. Two different architectures for the interpolation algorithm have been used (one-sample and two-sample interpolation), which allow us to work with two different FPGA internal sampling frequencies: 140 MHz and 210 MHz. The results show the importance of selecting the right algorithm and parameters. Time coincidence resolution in our hardware system can be improved by up to 6.9 ns FWHM depending on the chosen digital algorithm programmed on the FPGA. The measurements with our setup reveal that charge based algorithms are less sensitive to signal noise and generate better results than amplitude algorithms. The best configuration achieves a FWHM resolution close to 1.8 ns.</description><subject>Channels</subject><subject>Constant fraction discriminator</subject><subject>Counting</subject><subject>Crystals</subject><subject>Data acquisition</subject><subject>Detectors</subject><subject>digital signal processing</subject><subject>Electronics</subject><subject>Equivalence</subject><subject>Field programmable gate arrays</subject><subject>field-programmable gate array (FPGA)</subject><subject>Interpolation</subject><subject>Noise</subject><subject>Positron emission tomography</subject><subject>positron emission tomography (PET)</subject><subject>Signal processing algorithms</subject><subject>Signal resolution</subject><subject>time resolution</subject><subject>timing algorithms</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkL1PwzAQxS0EEuVjR2KJWJhSzrGd2CMqBSohqGiYLTe9tK6SuNgpEv89jooYmO6d9Hund4-QKwpjSkHdla-LcQaUjjPKgcnsiIyoEDKlopDHZARAZaq4UqfkLIRtXLkAMSL6wa5tb5pkYdddHHPvKgzBduukxGrT2c89hqR3yazdefeFSWlbTN4xuGbfW9cltkvmLtjeRz1tbbRGUbrWrb3Zbb4vyEltmoCXv_OcfDxOy8lz-vL2NJvcv6QVy3mfrhDyfMkxU5ABR2Yok6tVplQlMyw4raCGZc0LhHqJVMoajeTApSlMnXOm2Dm5PdyNKYfIvY5ZKmwa06HbB62oUplQgkby5h-5dXsffx-gXImcwgDBAaq8C8FjrXfetsZ_awp66FvHvvXQt_7tO1quDxaLiH-4KHJWMMF-ALQtfFo</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Monzo, J. M.</creator><creator>Esteve, R.</creator><creator>Lerche, C. W.</creator><creator>Ferrando, N.</creator><creator>Toledo, J.</creator><creator>Aliaga, R. J.</creator><creator>Herrero, V.</creator><creator>Mora, F. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201108</creationdate><title>Digital Signal Processing Techniques to Improve Time Resolution in Positron Emission Tomography</title><author>Monzo, J. M. ; Esteve, R. ; Lerche, C. W. ; Ferrando, N. ; Toledo, J. ; Aliaga, R. J. ; Herrero, V. ; Mora, F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-de066b4e290204e3a138dd299c82e741c0f0bf47e0fbe188fea84048a7af64393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Channels</topic><topic>Constant fraction discriminator</topic><topic>Counting</topic><topic>Crystals</topic><topic>Data acquisition</topic><topic>Detectors</topic><topic>digital signal processing</topic><topic>Electronics</topic><topic>Equivalence</topic><topic>Field programmable gate arrays</topic><topic>field-programmable gate array (FPGA)</topic><topic>Interpolation</topic><topic>Noise</topic><topic>Positron emission tomography</topic><topic>positron emission tomography (PET)</topic><topic>Signal processing algorithms</topic><topic>Signal resolution</topic><topic>time resolution</topic><topic>timing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monzo, J. M.</creatorcontrib><creatorcontrib>Esteve, R.</creatorcontrib><creatorcontrib>Lerche, C. W.</creatorcontrib><creatorcontrib>Ferrando, N.</creatorcontrib><creatorcontrib>Toledo, J.</creatorcontrib><creatorcontrib>Aliaga, R. J.</creatorcontrib><creatorcontrib>Herrero, V.</creatorcontrib><creatorcontrib>Mora, F. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Monzo, J. M.</au><au>Esteve, R.</au><au>Lerche, C. W.</au><au>Ferrando, N.</au><au>Toledo, J.</au><au>Aliaga, R. J.</au><au>Herrero, V.</au><au>Mora, F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Signal Processing Techniques to Improve Time Resolution in Positron Emission Tomography</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2011-08</date><risdate>2011</risdate><volume>58</volume><issue>4</issue><spage>1613</spage><epage>1620</epage><pages>1613-1620</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Coincidence time resolution is one of the most important issues in PET detectors. Improving this resolution is required to increase the noise equivalent count rate (NECR) that reduces the noise in the reconstructed images. The aim of this work is to evaluate the behavior and time resolution of different proposed time pick-off algorithms in order to select the best configuration for our PET system. The experimental setup used for this research is composed by two monolithic LSO crystals+PSPMT detectors and an FPGA based PET data acquisition system (DAQ). The acquired signals are sampled using a 12-bit 70 MHz analog to digital converter (ADC) per channel. The setup has no centralized electronics for trigger and event time extraction. Consequently, events for each detector head are processed independently and all the signals are acquired in the same way. Time resolution in this kind of systems can be improved by means of digital processing techniques and using different shapings for the last dynode signals. Four digital algorithms extracting time information from the acquired pulses have been evaluated: (1) Amplitude bipolar digital constant fraction discriminator (BCFD), (2) charge BCFD, (3) interpolated amplitude BCFD and (4) interpolated charge BCFD. Two different architectures for the interpolation algorithm have been used (one-sample and two-sample interpolation), which allow us to work with two different FPGA internal sampling frequencies: 140 MHz and 210 MHz. The results show the importance of selecting the right algorithm and parameters. Time coincidence resolution in our hardware system can be improved by up to 6.9 ns FWHM depending on the chosen digital algorithm programmed on the FPGA. The measurements with our setup reveal that charge based algorithms are less sensitive to signal noise and generate better results than amplitude algorithms. The best configuration achieves a FWHM resolution close to 1.8 ns.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2011.2140382</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2011-08, Vol.58 (4), p.1613-1620
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_5763735
source IEEE Electronic Library (IEL)
subjects Channels
Constant fraction discriminator
Counting
Crystals
Data acquisition
Detectors
digital signal processing
Electronics
Equivalence
Field programmable gate arrays
field-programmable gate array (FPGA)
Interpolation
Noise
Positron emission tomography
positron emission tomography (PET)
Signal processing algorithms
Signal resolution
time resolution
timing algorithms
title Digital Signal Processing Techniques to Improve Time Resolution in Positron Emission Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Signal%20Processing%20Techniques%20to%20Improve%20Time%20Resolution%20in%20Positron%20Emission%20Tomography&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Monzo,%20J.%20M.&rft.date=2011-08&rft.volume=58&rft.issue=4&rft.spage=1613&rft.epage=1620&rft.pages=1613-1620&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2011.2140382&rft_dat=%3Cproquest_RIE%3E919925951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916956101&rft_id=info:pmid/&rft_ieee_id=5763735&rfr_iscdi=true