Routing policy-dependent hop-count distribution in wireless ad hoc networks

We derive asymptotic expressions for the probability mass function (PMF) of the number of hops (a.k.a hop-count distribution) required to reach a designated distance D in random, connected and uniformly distributed one- and two-dimensional ad hoc networks. The elegance of the result is owned to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rahmatollahi, G, Abreu, G
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1742
container_issue
container_start_page 1738
container_title
container_volume
creator Rahmatollahi, G
Abreu, G
description We derive asymptotic expressions for the probability mass function (PMF) of the number of hops (a.k.a hop-count distribution) required to reach a designated distance D in random, connected and uniformly distributed one- and two-dimensional ad hoc networks. The elegance of the result is owned to the application of Renewal Theory, a generalization of Poisson processes. The method is general, requiring only that the distribution of the hop-length under the desired policy be known, such that application to two-dimensional networks is straightforward, amounting to the problem of computing the projection of the average hop-length onto a straight. Consequently, the formulae are remarkably simple and accurate compared to current knowledge, allowing for the effect of hopping policies (e.g. random, closest- and furthest-neighbor) to be easily taken into account; and yielding counter-intuitive insight on this important parameter of ad hoc networks. For instance, the analysis reveals that the hop-count distribution is nothing but a scaled version of the node-number1 distribution, with the scale parameter inversely proportional the average hop-length times the network density. In the linear case, where the node-count distribution is Poisson, this result both elucidates the equivalence and quantifies the impact of node-density and hopping policy on the likely number of hops to reach any destination.
doi_str_mv 10.1109/ACSSC.2010.5757838
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5757838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5757838</ieee_id><sourcerecordid>5757838</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e9426f381eee2b3a71ca5bd8ec2ecf61488350a295025026adedd99a392cd1e33</originalsourceid><addsrcrecordid>eNo1kFtLAzEQheMNrHX_gL7sH0jNZXN7LItVsSBYfS7ZZFaj62bZbCn99wasw8Ccwzl8D4PQDSULSom5W9abTb1gJHuhhNJcn6DCKE0rVlVG5eAUzZhQEjNO-Bm6-g8YPUczSoTGkht-iYqUvkgeKY2u2Aw9v8bdFPqPcohdcAfsYYDeQz-Vn3HALu6y8iFNY2hyL_Zl6Mt9GKGDlErrc8uVPUz7OH6na3TR2i5Bcbxz9L66f6sf8frl4alernGgSkwYTMVkyzUFANZwq6izovEaHAPXSlppzQWxzAjC8krrwXtjLDfMeQqcz9HtHzdkwnYYw48dD9vjX_gv_gFTkg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Routing policy-dependent hop-count distribution in wireless ad hoc networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rahmatollahi, G ; Abreu, G</creator><creatorcontrib>Rahmatollahi, G ; Abreu, G</creatorcontrib><description>We derive asymptotic expressions for the probability mass function (PMF) of the number of hops (a.k.a hop-count distribution) required to reach a designated distance D in random, connected and uniformly distributed one- and two-dimensional ad hoc networks. The elegance of the result is owned to the application of Renewal Theory, a generalization of Poisson processes. The method is general, requiring only that the distribution of the hop-length under the desired policy be known, such that application to two-dimensional networks is straightforward, amounting to the problem of computing the projection of the average hop-length onto a straight. Consequently, the formulae are remarkably simple and accurate compared to current knowledge, allowing for the effect of hopping policies (e.g. random, closest- and furthest-neighbor) to be easily taken into account; and yielding counter-intuitive insight on this important parameter of ad hoc networks. For instance, the analysis reveals that the hop-count distribution is nothing but a scaled version of the node-number1 distribution, with the scale parameter inversely proportional the average hop-length times the network density. In the linear case, where the node-count distribution is Poisson, this result both elucidates the equivalence and quantifies the impact of node-density and hopping policy on the likely number of hops to reach any destination.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 1424497221</identifier><identifier>ISBN: 9781424497225</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781424497201</identifier><identifier>EISBN: 1424497213</identifier><identifier>EISBN: 9781424497218</identifier><identifier>EISBN: 1424497205</identifier><identifier>DOI: 10.1109/ACSSC.2010.5757838</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Conferences ; Mathematical model ; Routing ; Spread spectrum communication ; Wireless networks</subject><ispartof>2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010, p.1738-1742</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5757838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5757838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rahmatollahi, G</creatorcontrib><creatorcontrib>Abreu, G</creatorcontrib><title>Routing policy-dependent hop-count distribution in wireless ad hoc networks</title><title>2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>We derive asymptotic expressions for the probability mass function (PMF) of the number of hops (a.k.a hop-count distribution) required to reach a designated distance D in random, connected and uniformly distributed one- and two-dimensional ad hoc networks. The elegance of the result is owned to the application of Renewal Theory, a generalization of Poisson processes. The method is general, requiring only that the distribution of the hop-length under the desired policy be known, such that application to two-dimensional networks is straightforward, amounting to the problem of computing the projection of the average hop-length onto a straight. Consequently, the formulae are remarkably simple and accurate compared to current knowledge, allowing for the effect of hopping policies (e.g. random, closest- and furthest-neighbor) to be easily taken into account; and yielding counter-intuitive insight on this important parameter of ad hoc networks. For instance, the analysis reveals that the hop-count distribution is nothing but a scaled version of the node-number1 distribution, with the scale parameter inversely proportional the average hop-length times the network density. In the linear case, where the node-count distribution is Poisson, this result both elucidates the equivalence and quantifies the impact of node-density and hopping policy on the likely number of hops to reach any destination.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Conferences</subject><subject>Mathematical model</subject><subject>Routing</subject><subject>Spread spectrum communication</subject><subject>Wireless networks</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>1424497221</isbn><isbn>9781424497225</isbn><isbn>9781424497201</isbn><isbn>1424497213</isbn><isbn>9781424497218</isbn><isbn>1424497205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kFtLAzEQheMNrHX_gL7sH0jNZXN7LItVsSBYfS7ZZFaj62bZbCn99wasw8Ccwzl8D4PQDSULSom5W9abTb1gJHuhhNJcn6DCKE0rVlVG5eAUzZhQEjNO-Bm6-g8YPUczSoTGkht-iYqUvkgeKY2u2Aw9v8bdFPqPcohdcAfsYYDeQz-Vn3HALu6y8iFNY2hyL_Zl6Mt9GKGDlErrc8uVPUz7OH6na3TR2i5Bcbxz9L66f6sf8frl4alernGgSkwYTMVkyzUFANZwq6izovEaHAPXSlppzQWxzAjC8krrwXtjLDfMeQqcz9HtHzdkwnYYw48dD9vjX_gv_gFTkg</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Rahmatollahi, G</creator><creator>Abreu, G</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201011</creationdate><title>Routing policy-dependent hop-count distribution in wireless ad hoc networks</title><author>Rahmatollahi, G ; Abreu, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e9426f381eee2b3a71ca5bd8ec2ecf61488350a295025026adedd99a392cd1e33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Conferences</topic><topic>Mathematical model</topic><topic>Routing</topic><topic>Spread spectrum communication</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahmatollahi, G</creatorcontrib><creatorcontrib>Abreu, G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahmatollahi, G</au><au>Abreu, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Routing policy-dependent hop-count distribution in wireless ad hoc networks</atitle><btitle>2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2010-11</date><risdate>2010</risdate><spage>1738</spage><epage>1742</epage><pages>1738-1742</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>1424497221</isbn><isbn>9781424497225</isbn><eisbn>9781424497201</eisbn><eisbn>1424497213</eisbn><eisbn>9781424497218</eisbn><eisbn>1424497205</eisbn><abstract>We derive asymptotic expressions for the probability mass function (PMF) of the number of hops (a.k.a hop-count distribution) required to reach a designated distance D in random, connected and uniformly distributed one- and two-dimensional ad hoc networks. The elegance of the result is owned to the application of Renewal Theory, a generalization of Poisson processes. The method is general, requiring only that the distribution of the hop-length under the desired policy be known, such that application to two-dimensional networks is straightforward, amounting to the problem of computing the projection of the average hop-length onto a straight. Consequently, the formulae are remarkably simple and accurate compared to current knowledge, allowing for the effect of hopping policies (e.g. random, closest- and furthest-neighbor) to be easily taken into account; and yielding counter-intuitive insight on this important parameter of ad hoc networks. For instance, the analysis reveals that the hop-count distribution is nothing but a scaled version of the node-number1 distribution, with the scale parameter inversely proportional the average hop-length times the network density. In the linear case, where the node-count distribution is Poisson, this result both elucidates the equivalence and quantifies the impact of node-density and hopping policy on the likely number of hops to reach any destination.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2010.5757838</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010, p.1738-1742
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_5757838
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Artificial neural networks
Conferences
Mathematical model
Routing
Spread spectrum communication
Wireless networks
title Routing policy-dependent hop-count distribution in wireless ad hoc networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Routing%20policy-dependent%20hop-count%20distribution%20in%20wireless%20ad%20hoc%20networks&rft.btitle=2010%20Conference%20Record%20of%20the%20Forty%20Fourth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Rahmatollahi,%20G&rft.date=2010-11&rft.spage=1738&rft.epage=1742&rft.pages=1738-1742&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=1424497221&rft.isbn_list=9781424497225&rft_id=info:doi/10.1109/ACSSC.2010.5757838&rft_dat=%3Cieee_6IE%3E5757838%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424497201&rft.eisbn_list=1424497213&rft.eisbn_list=9781424497218&rft.eisbn_list=1424497205&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5757838&rfr_iscdi=true