Spectral entropy-based quantization matrices for H.264/AVC video coding

In transform-based compression schemes, the task of choosing, quantizing, and coding the coefficients that best represent a signal is of prime importance. As a step in this direction, Yang and Gibson [1] have designed a coefficient selection scheme based on Campbell's coefficient rate and spect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bhaskaranand, M, Gibson, J D
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue
container_start_page 421
container_title
container_volume
creator Bhaskaranand, M
Gibson, J D
description In transform-based compression schemes, the task of choosing, quantizing, and coding the coefficients that best represent a signal is of prime importance. As a step in this direction, Yang and Gibson [1] have designed a coefficient selection scheme based on Campbell's coefficient rate and spectral entropy [2]. Building on their coefficient selection mechanism, we develop a method to allocate bits amongst the chosen coefficients that can outperform the classical method under certain conditions. We then design quantization matrices (QMs) based on the proposed bit allocation scheme. Results show that the newly designed QMs perform better than the default QMs for H.264/AVC encoding in terms of both peak signal to noise ratio (PSNR) and structural similarity (SSIM). The proposed method entails delay but is not computationally intensive.
doi_str_mv 10.1109/ACSSC.2010.5757592
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5757592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5757592</ieee_id><sourcerecordid>5757592</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-77b4ed5ab4de8889b300708753db12d0ab18517266001600aa02c8964077aabf3</originalsourceid><addsrcrecordid>eNo1UM1Kw0AYXP_AWvMCetkXSPvt_-4xBG2Fgoeq1_JtdiMrbRKTKNSnN2CdYRiGgTkMIXcMFoyBWxbldlsuOExZmYmOn5HMGcskl9KZqTgnM66MzrkAcUFu_gvOLsmMgbK5Fk5ck2wYPmCC1s5KPiOrbRerscc9jc3Yt90x9zjEQD-_sBnTD46pbegBxz5VcaB129P1gmu5LN5K-p1CbGnVhtS835KrGvdDzE4-J6-PDy_lOt88r57KYpMnZtSYG-NlDAq9DNFa67wAMGCNEsEzHgA9s4oZrjUAm4QIvLJOSzAG0ddiTu7_dlOMcdf16YD9cXf6RPwCQW5PQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spectral entropy-based quantization matrices for H.264/AVC video coding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhaskaranand, M ; Gibson, J D</creator><creatorcontrib>Bhaskaranand, M ; Gibson, J D</creatorcontrib><description>In transform-based compression schemes, the task of choosing, quantizing, and coding the coefficients that best represent a signal is of prime importance. As a step in this direction, Yang and Gibson [1] have designed a coefficient selection scheme based on Campbell's coefficient rate and spectral entropy [2]. Building on their coefficient selection mechanism, we develop a method to allocate bits amongst the chosen coefficients that can outperform the classical method under certain conditions. We then design quantization matrices (QMs) based on the proposed bit allocation scheme. Results show that the newly designed QMs perform better than the default QMs for H.264/AVC encoding in terms of both peak signal to noise ratio (PSNR) and structural similarity (SSIM). The proposed method entails delay but is not computationally intensive.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 1424497221</identifier><identifier>ISBN: 9781424497225</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781424497201</identifier><identifier>EISBN: 1424497213</identifier><identifier>EISBN: 9781424497218</identifier><identifier>EISBN: 1424497205</identifier><identifier>DOI: 10.1109/ACSSC.2010.5757592</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit rate ; Discrete cosine transforms ; Encoding ; Entropy ; PSNR ; Quantization</subject><ispartof>2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010, p.421-425</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5757592$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5757592$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhaskaranand, M</creatorcontrib><creatorcontrib>Gibson, J D</creatorcontrib><title>Spectral entropy-based quantization matrices for H.264/AVC video coding</title><title>2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>In transform-based compression schemes, the task of choosing, quantizing, and coding the coefficients that best represent a signal is of prime importance. As a step in this direction, Yang and Gibson [1] have designed a coefficient selection scheme based on Campbell's coefficient rate and spectral entropy [2]. Building on their coefficient selection mechanism, we develop a method to allocate bits amongst the chosen coefficients that can outperform the classical method under certain conditions. We then design quantization matrices (QMs) based on the proposed bit allocation scheme. Results show that the newly designed QMs perform better than the default QMs for H.264/AVC encoding in terms of both peak signal to noise ratio (PSNR) and structural similarity (SSIM). The proposed method entails delay but is not computationally intensive.</description><subject>Bit rate</subject><subject>Discrete cosine transforms</subject><subject>Encoding</subject><subject>Entropy</subject><subject>PSNR</subject><subject>Quantization</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>1424497221</isbn><isbn>9781424497225</isbn><isbn>9781424497201</isbn><isbn>1424497213</isbn><isbn>9781424497218</isbn><isbn>1424497205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1Kw0AYXP_AWvMCetkXSPvt_-4xBG2Fgoeq1_JtdiMrbRKTKNSnN2CdYRiGgTkMIXcMFoyBWxbldlsuOExZmYmOn5HMGcskl9KZqTgnM66MzrkAcUFu_gvOLsmMgbK5Fk5ck2wYPmCC1s5KPiOrbRerscc9jc3Yt90x9zjEQD-_sBnTD46pbegBxz5VcaB129P1gmu5LN5K-p1CbGnVhtS835KrGvdDzE4-J6-PDy_lOt88r57KYpMnZtSYG-NlDAq9DNFa67wAMGCNEsEzHgA9s4oZrjUAm4QIvLJOSzAG0ddiTu7_dlOMcdf16YD9cXf6RPwCQW5PQA</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Bhaskaranand, M</creator><creator>Gibson, J D</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201011</creationdate><title>Spectral entropy-based quantization matrices for H.264/AVC video coding</title><author>Bhaskaranand, M ; Gibson, J D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-77b4ed5ab4de8889b300708753db12d0ab18517266001600aa02c8964077aabf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bit rate</topic><topic>Discrete cosine transforms</topic><topic>Encoding</topic><topic>Entropy</topic><topic>PSNR</topic><topic>Quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhaskaranand, M</creatorcontrib><creatorcontrib>Gibson, J D</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhaskaranand, M</au><au>Gibson, J D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spectral entropy-based quantization matrices for H.264/AVC video coding</atitle><btitle>2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2010-11</date><risdate>2010</risdate><spage>421</spage><epage>425</epage><pages>421-425</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>1424497221</isbn><isbn>9781424497225</isbn><eisbn>9781424497201</eisbn><eisbn>1424497213</eisbn><eisbn>9781424497218</eisbn><eisbn>1424497205</eisbn><abstract>In transform-based compression schemes, the task of choosing, quantizing, and coding the coefficients that best represent a signal is of prime importance. As a step in this direction, Yang and Gibson [1] have designed a coefficient selection scheme based on Campbell's coefficient rate and spectral entropy [2]. Building on their coefficient selection mechanism, we develop a method to allocate bits amongst the chosen coefficients that can outperform the classical method under certain conditions. We then design quantization matrices (QMs) based on the proposed bit allocation scheme. Results show that the newly designed QMs perform better than the default QMs for H.264/AVC encoding in terms of both peak signal to noise ratio (PSNR) and structural similarity (SSIM). The proposed method entails delay but is not computationally intensive.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2010.5757592</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010, p.421-425
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_5757592
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bit rate
Discrete cosine transforms
Encoding
Entropy
PSNR
Quantization
title Spectral entropy-based quantization matrices for H.264/AVC video coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spectral%20entropy-based%20quantization%20matrices%20for%20H.264/AVC%20video%20coding&rft.btitle=2010%20Conference%20Record%20of%20the%20Forty%20Fourth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Bhaskaranand,%20M&rft.date=2010-11&rft.spage=421&rft.epage=425&rft.pages=421-425&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=1424497221&rft.isbn_list=9781424497225&rft_id=info:doi/10.1109/ACSSC.2010.5757592&rft_dat=%3Cieee_6IE%3E5757592%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424497201&rft.eisbn_list=1424497213&rft.eisbn_list=9781424497218&rft.eisbn_list=1424497205&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5757592&rfr_iscdi=true