Spectral entropy-based quantization matrices for H.264/AVC video coding
In transform-based compression schemes, the task of choosing, quantizing, and coding the coefficients that best represent a signal is of prime importance. As a step in this direction, Yang and Gibson [1] have designed a coefficient selection scheme based on Campbell's coefficient rate and spect...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 425 |
---|---|
container_issue | |
container_start_page | 421 |
container_title | |
container_volume | |
creator | Bhaskaranand, M Gibson, J D |
description | In transform-based compression schemes, the task of choosing, quantizing, and coding the coefficients that best represent a signal is of prime importance. As a step in this direction, Yang and Gibson [1] have designed a coefficient selection scheme based on Campbell's coefficient rate and spectral entropy [2]. Building on their coefficient selection mechanism, we develop a method to allocate bits amongst the chosen coefficients that can outperform the classical method under certain conditions. We then design quantization matrices (QMs) based on the proposed bit allocation scheme. Results show that the newly designed QMs perform better than the default QMs for H.264/AVC encoding in terms of both peak signal to noise ratio (PSNR) and structural similarity (SSIM). The proposed method entails delay but is not computationally intensive. |
doi_str_mv | 10.1109/ACSSC.2010.5757592 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5757592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5757592</ieee_id><sourcerecordid>5757592</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-77b4ed5ab4de8889b300708753db12d0ab18517266001600aa02c8964077aabf3</originalsourceid><addsrcrecordid>eNo1UM1Kw0AYXP_AWvMCetkXSPvt_-4xBG2Fgoeq1_JtdiMrbRKTKNSnN2CdYRiGgTkMIXcMFoyBWxbldlsuOExZmYmOn5HMGcskl9KZqTgnM66MzrkAcUFu_gvOLsmMgbK5Fk5ck2wYPmCC1s5KPiOrbRerscc9jc3Yt90x9zjEQD-_sBnTD46pbegBxz5VcaB129P1gmu5LN5K-p1CbGnVhtS835KrGvdDzE4-J6-PDy_lOt88r57KYpMnZtSYG-NlDAq9DNFa67wAMGCNEsEzHgA9s4oZrjUAm4QIvLJOSzAG0ddiTu7_dlOMcdf16YD9cXf6RPwCQW5PQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spectral entropy-based quantization matrices for H.264/AVC video coding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhaskaranand, M ; Gibson, J D</creator><creatorcontrib>Bhaskaranand, M ; Gibson, J D</creatorcontrib><description>In transform-based compression schemes, the task of choosing, quantizing, and coding the coefficients that best represent a signal is of prime importance. As a step in this direction, Yang and Gibson [1] have designed a coefficient selection scheme based on Campbell's coefficient rate and spectral entropy [2]. Building on their coefficient selection mechanism, we develop a method to allocate bits amongst the chosen coefficients that can outperform the classical method under certain conditions. We then design quantization matrices (QMs) based on the proposed bit allocation scheme. Results show that the newly designed QMs perform better than the default QMs for H.264/AVC encoding in terms of both peak signal to noise ratio (PSNR) and structural similarity (SSIM). The proposed method entails delay but is not computationally intensive.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 1424497221</identifier><identifier>ISBN: 9781424497225</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781424497201</identifier><identifier>EISBN: 1424497213</identifier><identifier>EISBN: 9781424497218</identifier><identifier>EISBN: 1424497205</identifier><identifier>DOI: 10.1109/ACSSC.2010.5757592</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit rate ; Discrete cosine transforms ; Encoding ; Entropy ; PSNR ; Quantization</subject><ispartof>2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010, p.421-425</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5757592$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5757592$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhaskaranand, M</creatorcontrib><creatorcontrib>Gibson, J D</creatorcontrib><title>Spectral entropy-based quantization matrices for H.264/AVC video coding</title><title>2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>In transform-based compression schemes, the task of choosing, quantizing, and coding the coefficients that best represent a signal is of prime importance. As a step in this direction, Yang and Gibson [1] have designed a coefficient selection scheme based on Campbell's coefficient rate and spectral entropy [2]. Building on their coefficient selection mechanism, we develop a method to allocate bits amongst the chosen coefficients that can outperform the classical method under certain conditions. We then design quantization matrices (QMs) based on the proposed bit allocation scheme. Results show that the newly designed QMs perform better than the default QMs for H.264/AVC encoding in terms of both peak signal to noise ratio (PSNR) and structural similarity (SSIM). The proposed method entails delay but is not computationally intensive.</description><subject>Bit rate</subject><subject>Discrete cosine transforms</subject><subject>Encoding</subject><subject>Entropy</subject><subject>PSNR</subject><subject>Quantization</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>1424497221</isbn><isbn>9781424497225</isbn><isbn>9781424497201</isbn><isbn>1424497213</isbn><isbn>9781424497218</isbn><isbn>1424497205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1Kw0AYXP_AWvMCetkXSPvt_-4xBG2Fgoeq1_JtdiMrbRKTKNSnN2CdYRiGgTkMIXcMFoyBWxbldlsuOExZmYmOn5HMGcskl9KZqTgnM66MzrkAcUFu_gvOLsmMgbK5Fk5ck2wYPmCC1s5KPiOrbRerscc9jc3Yt90x9zjEQD-_sBnTD46pbegBxz5VcaB129P1gmu5LN5K-p1CbGnVhtS835KrGvdDzE4-J6-PDy_lOt88r57KYpMnZtSYG-NlDAq9DNFa67wAMGCNEsEzHgA9s4oZrjUAm4QIvLJOSzAG0ddiTu7_dlOMcdf16YD9cXf6RPwCQW5PQA</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Bhaskaranand, M</creator><creator>Gibson, J D</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201011</creationdate><title>Spectral entropy-based quantization matrices for H.264/AVC video coding</title><author>Bhaskaranand, M ; Gibson, J D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-77b4ed5ab4de8889b300708753db12d0ab18517266001600aa02c8964077aabf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bit rate</topic><topic>Discrete cosine transforms</topic><topic>Encoding</topic><topic>Entropy</topic><topic>PSNR</topic><topic>Quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhaskaranand, M</creatorcontrib><creatorcontrib>Gibson, J D</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhaskaranand, M</au><au>Gibson, J D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spectral entropy-based quantization matrices for H.264/AVC video coding</atitle><btitle>2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2010-11</date><risdate>2010</risdate><spage>421</spage><epage>425</epage><pages>421-425</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>1424497221</isbn><isbn>9781424497225</isbn><eisbn>9781424497201</eisbn><eisbn>1424497213</eisbn><eisbn>9781424497218</eisbn><eisbn>1424497205</eisbn><abstract>In transform-based compression schemes, the task of choosing, quantizing, and coding the coefficients that best represent a signal is of prime importance. As a step in this direction, Yang and Gibson [1] have designed a coefficient selection scheme based on Campbell's coefficient rate and spectral entropy [2]. Building on their coefficient selection mechanism, we develop a method to allocate bits amongst the chosen coefficients that can outperform the classical method under certain conditions. We then design quantization matrices (QMs) based on the proposed bit allocation scheme. Results show that the newly designed QMs perform better than the default QMs for H.264/AVC encoding in terms of both peak signal to noise ratio (PSNR) and structural similarity (SSIM). The proposed method entails delay but is not computationally intensive.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2010.5757592</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1058-6393 |
ispartof | 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010, p.421-425 |
issn | 1058-6393 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_5757592 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bit rate Discrete cosine transforms Encoding Entropy PSNR Quantization |
title | Spectral entropy-based quantization matrices for H.264/AVC video coding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spectral%20entropy-based%20quantization%20matrices%20for%20H.264/AVC%20video%20coding&rft.btitle=2010%20Conference%20Record%20of%20the%20Forty%20Fourth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Bhaskaranand,%20M&rft.date=2010-11&rft.spage=421&rft.epage=425&rft.pages=421-425&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=1424497221&rft.isbn_list=9781424497225&rft_id=info:doi/10.1109/ACSSC.2010.5757592&rft_dat=%3Cieee_6IE%3E5757592%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424497201&rft.eisbn_list=1424497213&rft.eisbn_list=9781424497218&rft.eisbn_list=1424497205&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5757592&rfr_iscdi=true |