Modeling the gain due to maintenance over transformer lifespan

The aim of this paper is to develop a methodology that makes it possible to take advantage of power transformer operators' knowledge in order to reach a better control of process of preventive maintenance (PM). The main idea is to construct probabilistic models using a Bayesian approach along w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guessoum, Y, Grall, A, Barros, A, Aupied, J
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Guessoum, Y
Grall, A
Barros, A
Aupied, J
description The aim of this paper is to develop a methodology that makes it possible to take advantage of power transformer operators' knowledge in order to reach a better control of process of preventive maintenance (PM). The main idea is to construct probabilistic models using a Bayesian approach along with an age reduction model in order to compensate for both the lack of failure data on the maintained system and the co mplete absence of failure data on the non-maintained system. The originality of our approach is that we appeal to the operators to give their belief concerning the effectiveness of PM tasks. The results obtained consist of two models, one for the intrinsic behavior of the power transformer without PM, and one for the power transformer with PM. The comparison of these two models allows the quantification of the effectiveness of the PM activity, which can be used for an optimization of the scheme.
doi_str_mv 10.1109/RAMS.2011.5754511
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5754511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5754511</ieee_id><sourcerecordid>oai_HAL_hal_02332252v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h209t-d0b6935c585dc8343579c8e6c84f590dcffeca8eae8d37fb8a15fef3430854c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AYhNcvsK39AeJlrx5S3_14s7sXoRS1QougPXgL2827bSRNShIL_nsjVk8zzDzMYRi7FjARAtzd63T5NpEgxAQNahTihA2Fllpbi6k5ZQOJxiTgnDpjY2fsX2fwnA1AaJcIrd8v2bBtPwDAyBQG7H5Z51QW1YZ3W-IbX1Q8_yTe1XzX-44qXwXi9YEa3jW-amPd7HpfFpHava-u2EX0ZUvjo47Y6vFhNZsni5en59l0kWwluC7JYZ06hQEt5sEqrdC4YCkNVkd0kIcYKXhLnmyuTFxbLzBS7EGwqIMasdvf2a0vs31T7HzzldW-yObTRfaTgVRKSpQH0bM3v2xBRP_w8TL1DUzFWxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling the gain due to maintenance over transformer lifespan</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guessoum, Y ; Grall, A ; Barros, A ; Aupied, J</creator><creatorcontrib>Guessoum, Y ; Grall, A ; Barros, A ; Aupied, J</creatorcontrib><description>The aim of this paper is to develop a methodology that makes it possible to take advantage of power transformer operators' knowledge in order to reach a better control of process of preventive maintenance (PM). The main idea is to construct probabilistic models using a Bayesian approach along with an age reduction model in order to compensate for both the lack of failure data on the maintained system and the co mplete absence of failure data on the non-maintained system. The originality of our approach is that we appeal to the operators to give their belief concerning the effectiveness of PM tasks. The results obtained consist of two models, one for the intrinsic behavior of the power transformer without PM, and one for the power transformer with PM. The comparison of these two models allows the quantification of the effectiveness of the PM activity, which can be used for an optimization of the scheme.</description><identifier>ISSN: 0149-144X</identifier><identifier>ISBN: 9781424488575</identifier><identifier>ISBN: 1424488575</identifier><identifier>EISSN: 2577-0993</identifier><identifier>EISBN: 1424488567</identifier><identifier>EISBN: 9781424488551</identifier><identifier>EISBN: 1424488559</identifier><identifier>EISBN: 9781424488568</identifier><identifier>DOI: 10.1109/RAMS.2011.5754511</identifier><language>eng</language><publisher>IEEE</publisher><subject>Age Reduction ; Bayesian ; Bayesian methods ; Biological system modeling ; Computer Science ; Data models ; Density functional theory ; Experts Knowledge ; Maintenance engineering ; Mathematical model ; Power transformers ; Preventive Maintenance</subject><ispartof>2011 Proceedings - Annual Reliability and Maintainability Symposium, 2011, p.1-6</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3386-453X ; 0000-0002-6900-7951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5754511$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5754511$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://utt.hal.science/hal-02332252$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guessoum, Y</creatorcontrib><creatorcontrib>Grall, A</creatorcontrib><creatorcontrib>Barros, A</creatorcontrib><creatorcontrib>Aupied, J</creatorcontrib><title>Modeling the gain due to maintenance over transformer lifespan</title><title>2011 Proceedings - Annual Reliability and Maintainability Symposium</title><addtitle>RAMS</addtitle><description>The aim of this paper is to develop a methodology that makes it possible to take advantage of power transformer operators' knowledge in order to reach a better control of process of preventive maintenance (PM). The main idea is to construct probabilistic models using a Bayesian approach along with an age reduction model in order to compensate for both the lack of failure data on the maintained system and the co mplete absence of failure data on the non-maintained system. The originality of our approach is that we appeal to the operators to give their belief concerning the effectiveness of PM tasks. The results obtained consist of two models, one for the intrinsic behavior of the power transformer without PM, and one for the power transformer with PM. The comparison of these two models allows the quantification of the effectiveness of the PM activity, which can be used for an optimization of the scheme.</description><subject>Age Reduction</subject><subject>Bayesian</subject><subject>Bayesian methods</subject><subject>Biological system modeling</subject><subject>Computer Science</subject><subject>Data models</subject><subject>Density functional theory</subject><subject>Experts Knowledge</subject><subject>Maintenance engineering</subject><subject>Mathematical model</subject><subject>Power transformers</subject><subject>Preventive Maintenance</subject><issn>0149-144X</issn><issn>2577-0993</issn><isbn>9781424488575</isbn><isbn>1424488575</isbn><isbn>1424488567</isbn><isbn>9781424488551</isbn><isbn>1424488559</isbn><isbn>9781424488568</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AYhNcvsK39AeJlrx5S3_14s7sXoRS1QougPXgL2827bSRNShIL_nsjVk8zzDzMYRi7FjARAtzd63T5NpEgxAQNahTihA2Fllpbi6k5ZQOJxiTgnDpjY2fsX2fwnA1AaJcIrd8v2bBtPwDAyBQG7H5Z51QW1YZ3W-IbX1Q8_yTe1XzX-44qXwXi9YEa3jW-amPd7HpfFpHava-u2EX0ZUvjo47Y6vFhNZsni5en59l0kWwluC7JYZ06hQEt5sEqrdC4YCkNVkd0kIcYKXhLnmyuTFxbLzBS7EGwqIMasdvf2a0vs31T7HzzldW-yObTRfaTgVRKSpQH0bM3v2xBRP_w8TL1DUzFWxQ</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Guessoum, Y</creator><creator>Grall, A</creator><creator>Barros, A</creator><creator>Aupied, J</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3386-453X</orcidid><orcidid>https://orcid.org/0000-0002-6900-7951</orcidid></search><sort><creationdate>201101</creationdate><title>Modeling the gain due to maintenance over transformer lifespan</title><author>Guessoum, Y ; Grall, A ; Barros, A ; Aupied, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h209t-d0b6935c585dc8343579c8e6c84f590dcffeca8eae8d37fb8a15fef3430854c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Age Reduction</topic><topic>Bayesian</topic><topic>Bayesian methods</topic><topic>Biological system modeling</topic><topic>Computer Science</topic><topic>Data models</topic><topic>Density functional theory</topic><topic>Experts Knowledge</topic><topic>Maintenance engineering</topic><topic>Mathematical model</topic><topic>Power transformers</topic><topic>Preventive Maintenance</topic><toplevel>online_resources</toplevel><creatorcontrib>Guessoum, Y</creatorcontrib><creatorcontrib>Grall, A</creatorcontrib><creatorcontrib>Barros, A</creatorcontrib><creatorcontrib>Aupied, J</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guessoum, Y</au><au>Grall, A</au><au>Barros, A</au><au>Aupied, J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling the gain due to maintenance over transformer lifespan</atitle><btitle>2011 Proceedings - Annual Reliability and Maintainability Symposium</btitle><stitle>RAMS</stitle><date>2011-01</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0149-144X</issn><eissn>2577-0993</eissn><isbn>9781424488575</isbn><isbn>1424488575</isbn><eisbn>1424488567</eisbn><eisbn>9781424488551</eisbn><eisbn>1424488559</eisbn><eisbn>9781424488568</eisbn><abstract>The aim of this paper is to develop a methodology that makes it possible to take advantage of power transformer operators' knowledge in order to reach a better control of process of preventive maintenance (PM). The main idea is to construct probabilistic models using a Bayesian approach along with an age reduction model in order to compensate for both the lack of failure data on the maintained system and the co mplete absence of failure data on the non-maintained system. The originality of our approach is that we appeal to the operators to give their belief concerning the effectiveness of PM tasks. The results obtained consist of two models, one for the intrinsic behavior of the power transformer without PM, and one for the power transformer with PM. The comparison of these two models allows the quantification of the effectiveness of the PM activity, which can be used for an optimization of the scheme.</abstract><pub>IEEE</pub><doi>10.1109/RAMS.2011.5754511</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3386-453X</orcidid><orcidid>https://orcid.org/0000-0002-6900-7951</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0149-144X
ispartof 2011 Proceedings - Annual Reliability and Maintainability Symposium, 2011, p.1-6
issn 0149-144X
2577-0993
language eng
recordid cdi_ieee_primary_5754511
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Age Reduction
Bayesian
Bayesian methods
Biological system modeling
Computer Science
Data models
Density functional theory
Experts Knowledge
Maintenance engineering
Mathematical model
Power transformers
Preventive Maintenance
title Modeling the gain due to maintenance over transformer lifespan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20the%20gain%20due%20to%20maintenance%20over%20transformer%20lifespan&rft.btitle=2011%20Proceedings%20-%20Annual%20Reliability%20and%20Maintainability%20Symposium&rft.au=Guessoum,%20Y&rft.date=2011-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0149-144X&rft.eissn=2577-0993&rft.isbn=9781424488575&rft.isbn_list=1424488575&rft_id=info:doi/10.1109/RAMS.2011.5754511&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_02332252v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424488567&rft.eisbn_list=9781424488551&rft.eisbn_list=1424488559&rft.eisbn_list=9781424488568&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5754511&rfr_iscdi=true