Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME

The paper introduces an approach to automatically recognize people's activity patterns within an "intelligent" building. We envisage a model of interactions with a smart phone and building. Various sensors in smart phone enable to recognize daily routine of people's activities au...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KyoJoong Oh, Young-Seob Jeong, Sung-Suk Kim, Ho-Jin Choi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue
container_start_page 189
container_title
container_volume
creator KyoJoong Oh
Young-Seob Jeong
Sung-Suk Kim
Ho-Jin Choi
description The paper introduces an approach to automatically recognize people's activity patterns within an "intelligent" building. We envisage a model of interactions with a smart phone and building. Various sensors in smart phone enable to recognize daily routine of people's activities automatically in building. The smart phone application; `Activity Pattern Recognition in Mobile Environment (APRiME)' recognized user's activity using location context as GPS and Wi-Fi. For increasing the accuracy of user's activity in the application, we suggest a new method to recognize hands movement using small parts of gesture. It is possible to recognize the actions user's activities via gesture. This paper summarizes some experiments that we performed using a smart phone that equipped with 3-dimension accelerometer to detect gestures. We can apply to Parametric Hidden Markov Model to learn and detect movement of gesture like as video analysis. This research will eventually be extended to realize an intelligent building like a `Big Brother', which knows everything you did using 3-dimensional accelerometer in smart building.
doi_str_mv 10.1109/COGSIMA.2011.5753443
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5753443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5753443</ieee_id><sourcerecordid>5753443</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1aa450d7c493041c29be676df9dce1a70535ef403823b1aacc513d2e9d0164b3</originalsourceid><addsrcrecordid>eNo1kM1OwkAUhceoiYo8gS7mBYrz15nOkhAEEhqIuCfTmVu9WtpmWjD49BLF1Tlf8uUsDiGPnI04Z_ZpspptFvl4JBjno9SkUil5Qe645iJTJlP6kgytyf451VfkVkhjE661uSHDrvtgjEnBlGD6luxn0PX7CDSCb95q7LGpqWvbCr377V_Yv9O1i24HfURP5xgC1DR38bM50LwJUNGyidT5Hg_YH5PCdRBoC7Fralfh9wk6iAf0QLGm4_UL5tN7cl26qoPhOQdk8zx9ncyT5Wq2mIyXCVrWJ9w5lbJgvLKSKe6FLUAbHUobPHBnWCpTKBWTmZDFSfY-5TIIsIFxrQo5IA9_qwgA2zbizsXj9vyZ_AE6ZGB1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>KyoJoong Oh ; Young-Seob Jeong ; Sung-Suk Kim ; Ho-Jin Choi</creator><creatorcontrib>KyoJoong Oh ; Young-Seob Jeong ; Sung-Suk Kim ; Ho-Jin Choi</creatorcontrib><description>The paper introduces an approach to automatically recognize people's activity patterns within an "intelligent" building. We envisage a model of interactions with a smart phone and building. Various sensors in smart phone enable to recognize daily routine of people's activities automatically in building. The smart phone application; `Activity Pattern Recognition in Mobile Environment (APRiME)' recognized user's activity using location context as GPS and Wi-Fi. For increasing the accuracy of user's activity in the application, we suggest a new method to recognize hands movement using small parts of gesture. It is possible to recognize the actions user's activities via gesture. This paper summarizes some experiments that we performed using a smart phone that equipped with 3-dimension accelerometer to detect gestures. We can apply to Parametric Hidden Markov Model to learn and detect movement of gesture like as video analysis. This research will eventually be extended to realize an intelligent building like a `Big Brother', which knows everything you did using 3-dimensional accelerometer in smart building.</description><identifier>ISSN: 2379-1667</identifier><identifier>ISBN: 9781612847856</identifier><identifier>ISBN: 1612847854</identifier><identifier>EISBN: 1612847846</identifier><identifier>EISBN: 9781612847849</identifier><identifier>EISBN: 9781612847863</identifier><identifier>EISBN: 1612847862</identifier><identifier>DOI: 10.1109/COGSIMA.2011.5753443</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accelerometers ; Character recognition ; Context ; Context Modeling ; Context-aware services ; Gesture recognition ; Hidden Markov Model ; Hidden Markov models ; Intelligent sensors ; Pattern recognition ; Smart phones</subject><ispartof>2011 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2011, p.189-193</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5753443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5753443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>KyoJoong Oh</creatorcontrib><creatorcontrib>Young-Seob Jeong</creatorcontrib><creatorcontrib>Sung-Suk Kim</creatorcontrib><creatorcontrib>Ho-Jin Choi</creatorcontrib><title>Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME</title><title>2011 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA)</title><addtitle>COGSIMA</addtitle><description>The paper introduces an approach to automatically recognize people's activity patterns within an "intelligent" building. We envisage a model of interactions with a smart phone and building. Various sensors in smart phone enable to recognize daily routine of people's activities automatically in building. The smart phone application; `Activity Pattern Recognition in Mobile Environment (APRiME)' recognized user's activity using location context as GPS and Wi-Fi. For increasing the accuracy of user's activity in the application, we suggest a new method to recognize hands movement using small parts of gesture. It is possible to recognize the actions user's activities via gesture. This paper summarizes some experiments that we performed using a smart phone that equipped with 3-dimension accelerometer to detect gestures. We can apply to Parametric Hidden Markov Model to learn and detect movement of gesture like as video analysis. This research will eventually be extended to realize an intelligent building like a `Big Brother', which knows everything you did using 3-dimensional accelerometer in smart building.</description><subject>Accelerometers</subject><subject>Character recognition</subject><subject>Context</subject><subject>Context Modeling</subject><subject>Context-aware services</subject><subject>Gesture recognition</subject><subject>Hidden Markov Model</subject><subject>Hidden Markov models</subject><subject>Intelligent sensors</subject><subject>Pattern recognition</subject><subject>Smart phones</subject><issn>2379-1667</issn><isbn>9781612847856</isbn><isbn>1612847854</isbn><isbn>1612847846</isbn><isbn>9781612847849</isbn><isbn>9781612847863</isbn><isbn>1612847862</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1OwkAUhceoiYo8gS7mBYrz15nOkhAEEhqIuCfTmVu9WtpmWjD49BLF1Tlf8uUsDiGPnI04Z_ZpspptFvl4JBjno9SkUil5Qe645iJTJlP6kgytyf451VfkVkhjE661uSHDrvtgjEnBlGD6luxn0PX7CDSCb95q7LGpqWvbCr377V_Yv9O1i24HfURP5xgC1DR38bM50LwJUNGyidT5Hg_YH5PCdRBoC7Fralfh9wk6iAf0QLGm4_UL5tN7cl26qoPhOQdk8zx9ncyT5Wq2mIyXCVrWJ9w5lbJgvLKSKe6FLUAbHUobPHBnWCpTKBWTmZDFSfY-5TIIsIFxrQo5IA9_qwgA2zbizsXj9vyZ_AE6ZGB1</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>KyoJoong Oh</creator><creator>Young-Seob Jeong</creator><creator>Sung-Suk Kim</creator><creator>Ho-Jin Choi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201102</creationdate><title>Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME</title><author>KyoJoong Oh ; Young-Seob Jeong ; Sung-Suk Kim ; Ho-Jin Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1aa450d7c493041c29be676df9dce1a70535ef403823b1aacc513d2e9d0164b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accelerometers</topic><topic>Character recognition</topic><topic>Context</topic><topic>Context Modeling</topic><topic>Context-aware services</topic><topic>Gesture recognition</topic><topic>Hidden Markov Model</topic><topic>Hidden Markov models</topic><topic>Intelligent sensors</topic><topic>Pattern recognition</topic><topic>Smart phones</topic><toplevel>online_resources</toplevel><creatorcontrib>KyoJoong Oh</creatorcontrib><creatorcontrib>Young-Seob Jeong</creatorcontrib><creatorcontrib>Sung-Suk Kim</creatorcontrib><creatorcontrib>Ho-Jin Choi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KyoJoong Oh</au><au>Young-Seob Jeong</au><au>Sung-Suk Kim</au><au>Ho-Jin Choi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME</atitle><btitle>2011 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA)</btitle><stitle>COGSIMA</stitle><date>2011-02</date><risdate>2011</risdate><spage>189</spage><epage>193</epage><pages>189-193</pages><issn>2379-1667</issn><isbn>9781612847856</isbn><isbn>1612847854</isbn><eisbn>1612847846</eisbn><eisbn>9781612847849</eisbn><eisbn>9781612847863</eisbn><eisbn>1612847862</eisbn><abstract>The paper introduces an approach to automatically recognize people's activity patterns within an "intelligent" building. We envisage a model of interactions with a smart phone and building. Various sensors in smart phone enable to recognize daily routine of people's activities automatically in building. The smart phone application; `Activity Pattern Recognition in Mobile Environment (APRiME)' recognized user's activity using location context as GPS and Wi-Fi. For increasing the accuracy of user's activity in the application, we suggest a new method to recognize hands movement using small parts of gesture. It is possible to recognize the actions user's activities via gesture. This paper summarizes some experiments that we performed using a smart phone that equipped with 3-dimension accelerometer to detect gestures. We can apply to Parametric Hidden Markov Model to learn and detect movement of gesture like as video analysis. This research will eventually be extended to realize an intelligent building like a `Big Brother', which knows everything you did using 3-dimensional accelerometer in smart building.</abstract><pub>IEEE</pub><doi>10.1109/COGSIMA.2011.5753443</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-1667
ispartof 2011 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2011, p.189-193
issn 2379-1667
language eng
recordid cdi_ieee_primary_5753443
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accelerometers
Character recognition
Context
Context Modeling
Context-aware services
Gesture recognition
Hidden Markov Model
Hidden Markov models
Intelligent sensors
Pattern recognition
Smart phones
title Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gesture%20recognition%20application%20with%20Parametric%20Hidden%20Markov%20Model%20for%20activity-based%20personalized%20service%20in%20APRiME&rft.btitle=2011%20IEEE%20International%20Multi-Disciplinary%20Conference%20on%20Cognitive%20Methods%20in%20Situation%20Awareness%20and%20Decision%20Support%20(CogSIMA)&rft.au=KyoJoong%20Oh&rft.date=2011-02&rft.spage=189&rft.epage=193&rft.pages=189-193&rft.issn=2379-1667&rft.isbn=9781612847856&rft.isbn_list=1612847854&rft_id=info:doi/10.1109/COGSIMA.2011.5753443&rft_dat=%3Cieee_6IE%3E5753443%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847846&rft.eisbn_list=9781612847849&rft.eisbn_list=9781612847863&rft.eisbn_list=1612847862&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5753443&rfr_iscdi=true