Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME
The paper introduces an approach to automatically recognize people's activity patterns within an "intelligent" building. We envisage a model of interactions with a smart phone and building. Various sensors in smart phone enable to recognize daily routine of people's activities au...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | |
container_start_page | 189 |
container_title | |
container_volume | |
creator | KyoJoong Oh Young-Seob Jeong Sung-Suk Kim Ho-Jin Choi |
description | The paper introduces an approach to automatically recognize people's activity patterns within an "intelligent" building. We envisage a model of interactions with a smart phone and building. Various sensors in smart phone enable to recognize daily routine of people's activities automatically in building. The smart phone application; `Activity Pattern Recognition in Mobile Environment (APRiME)' recognized user's activity using location context as GPS and Wi-Fi. For increasing the accuracy of user's activity in the application, we suggest a new method to recognize hands movement using small parts of gesture. It is possible to recognize the actions user's activities via gesture. This paper summarizes some experiments that we performed using a smart phone that equipped with 3-dimension accelerometer to detect gestures. We can apply to Parametric Hidden Markov Model to learn and detect movement of gesture like as video analysis. This research will eventually be extended to realize an intelligent building like a `Big Brother', which knows everything you did using 3-dimensional accelerometer in smart building. |
doi_str_mv | 10.1109/COGSIMA.2011.5753443 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5753443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5753443</ieee_id><sourcerecordid>5753443</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1aa450d7c493041c29be676df9dce1a70535ef403823b1aacc513d2e9d0164b3</originalsourceid><addsrcrecordid>eNo1kM1OwkAUhceoiYo8gS7mBYrz15nOkhAEEhqIuCfTmVu9WtpmWjD49BLF1Tlf8uUsDiGPnI04Z_ZpspptFvl4JBjno9SkUil5Qe645iJTJlP6kgytyf451VfkVkhjE661uSHDrvtgjEnBlGD6luxn0PX7CDSCb95q7LGpqWvbCr377V_Yv9O1i24HfURP5xgC1DR38bM50LwJUNGyidT5Hg_YH5PCdRBoC7Fralfh9wk6iAf0QLGm4_UL5tN7cl26qoPhOQdk8zx9ncyT5Wq2mIyXCVrWJ9w5lbJgvLKSKe6FLUAbHUobPHBnWCpTKBWTmZDFSfY-5TIIsIFxrQo5IA9_qwgA2zbizsXj9vyZ_AE6ZGB1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>KyoJoong Oh ; Young-Seob Jeong ; Sung-Suk Kim ; Ho-Jin Choi</creator><creatorcontrib>KyoJoong Oh ; Young-Seob Jeong ; Sung-Suk Kim ; Ho-Jin Choi</creatorcontrib><description>The paper introduces an approach to automatically recognize people's activity patterns within an "intelligent" building. We envisage a model of interactions with a smart phone and building. Various sensors in smart phone enable to recognize daily routine of people's activities automatically in building. The smart phone application; `Activity Pattern Recognition in Mobile Environment (APRiME)' recognized user's activity using location context as GPS and Wi-Fi. For increasing the accuracy of user's activity in the application, we suggest a new method to recognize hands movement using small parts of gesture. It is possible to recognize the actions user's activities via gesture. This paper summarizes some experiments that we performed using a smart phone that equipped with 3-dimension accelerometer to detect gestures. We can apply to Parametric Hidden Markov Model to learn and detect movement of gesture like as video analysis. This research will eventually be extended to realize an intelligent building like a `Big Brother', which knows everything you did using 3-dimensional accelerometer in smart building.</description><identifier>ISSN: 2379-1667</identifier><identifier>ISBN: 9781612847856</identifier><identifier>ISBN: 1612847854</identifier><identifier>EISBN: 1612847846</identifier><identifier>EISBN: 9781612847849</identifier><identifier>EISBN: 9781612847863</identifier><identifier>EISBN: 1612847862</identifier><identifier>DOI: 10.1109/COGSIMA.2011.5753443</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accelerometers ; Character recognition ; Context ; Context Modeling ; Context-aware services ; Gesture recognition ; Hidden Markov Model ; Hidden Markov models ; Intelligent sensors ; Pattern recognition ; Smart phones</subject><ispartof>2011 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2011, p.189-193</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5753443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5753443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>KyoJoong Oh</creatorcontrib><creatorcontrib>Young-Seob Jeong</creatorcontrib><creatorcontrib>Sung-Suk Kim</creatorcontrib><creatorcontrib>Ho-Jin Choi</creatorcontrib><title>Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME</title><title>2011 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA)</title><addtitle>COGSIMA</addtitle><description>The paper introduces an approach to automatically recognize people's activity patterns within an "intelligent" building. We envisage a model of interactions with a smart phone and building. Various sensors in smart phone enable to recognize daily routine of people's activities automatically in building. The smart phone application; `Activity Pattern Recognition in Mobile Environment (APRiME)' recognized user's activity using location context as GPS and Wi-Fi. For increasing the accuracy of user's activity in the application, we suggest a new method to recognize hands movement using small parts of gesture. It is possible to recognize the actions user's activities via gesture. This paper summarizes some experiments that we performed using a smart phone that equipped with 3-dimension accelerometer to detect gestures. We can apply to Parametric Hidden Markov Model to learn and detect movement of gesture like as video analysis. This research will eventually be extended to realize an intelligent building like a `Big Brother', which knows everything you did using 3-dimensional accelerometer in smart building.</description><subject>Accelerometers</subject><subject>Character recognition</subject><subject>Context</subject><subject>Context Modeling</subject><subject>Context-aware services</subject><subject>Gesture recognition</subject><subject>Hidden Markov Model</subject><subject>Hidden Markov models</subject><subject>Intelligent sensors</subject><subject>Pattern recognition</subject><subject>Smart phones</subject><issn>2379-1667</issn><isbn>9781612847856</isbn><isbn>1612847854</isbn><isbn>1612847846</isbn><isbn>9781612847849</isbn><isbn>9781612847863</isbn><isbn>1612847862</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1OwkAUhceoiYo8gS7mBYrz15nOkhAEEhqIuCfTmVu9WtpmWjD49BLF1Tlf8uUsDiGPnI04Z_ZpspptFvl4JBjno9SkUil5Qe645iJTJlP6kgytyf451VfkVkhjE661uSHDrvtgjEnBlGD6luxn0PX7CDSCb95q7LGpqWvbCr377V_Yv9O1i24HfURP5xgC1DR38bM50LwJUNGyidT5Hg_YH5PCdRBoC7Fralfh9wk6iAf0QLGm4_UL5tN7cl26qoPhOQdk8zx9ncyT5Wq2mIyXCVrWJ9w5lbJgvLKSKe6FLUAbHUobPHBnWCpTKBWTmZDFSfY-5TIIsIFxrQo5IA9_qwgA2zbizsXj9vyZ_AE6ZGB1</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>KyoJoong Oh</creator><creator>Young-Seob Jeong</creator><creator>Sung-Suk Kim</creator><creator>Ho-Jin Choi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201102</creationdate><title>Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME</title><author>KyoJoong Oh ; Young-Seob Jeong ; Sung-Suk Kim ; Ho-Jin Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1aa450d7c493041c29be676df9dce1a70535ef403823b1aacc513d2e9d0164b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accelerometers</topic><topic>Character recognition</topic><topic>Context</topic><topic>Context Modeling</topic><topic>Context-aware services</topic><topic>Gesture recognition</topic><topic>Hidden Markov Model</topic><topic>Hidden Markov models</topic><topic>Intelligent sensors</topic><topic>Pattern recognition</topic><topic>Smart phones</topic><toplevel>online_resources</toplevel><creatorcontrib>KyoJoong Oh</creatorcontrib><creatorcontrib>Young-Seob Jeong</creatorcontrib><creatorcontrib>Sung-Suk Kim</creatorcontrib><creatorcontrib>Ho-Jin Choi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KyoJoong Oh</au><au>Young-Seob Jeong</au><au>Sung-Suk Kim</au><au>Ho-Jin Choi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME</atitle><btitle>2011 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA)</btitle><stitle>COGSIMA</stitle><date>2011-02</date><risdate>2011</risdate><spage>189</spage><epage>193</epage><pages>189-193</pages><issn>2379-1667</issn><isbn>9781612847856</isbn><isbn>1612847854</isbn><eisbn>1612847846</eisbn><eisbn>9781612847849</eisbn><eisbn>9781612847863</eisbn><eisbn>1612847862</eisbn><abstract>The paper introduces an approach to automatically recognize people's activity patterns within an "intelligent" building. We envisage a model of interactions with a smart phone and building. Various sensors in smart phone enable to recognize daily routine of people's activities automatically in building. The smart phone application; `Activity Pattern Recognition in Mobile Environment (APRiME)' recognized user's activity using location context as GPS and Wi-Fi. For increasing the accuracy of user's activity in the application, we suggest a new method to recognize hands movement using small parts of gesture. It is possible to recognize the actions user's activities via gesture. This paper summarizes some experiments that we performed using a smart phone that equipped with 3-dimension accelerometer to detect gestures. We can apply to Parametric Hidden Markov Model to learn and detect movement of gesture like as video analysis. This research will eventually be extended to realize an intelligent building like a `Big Brother', which knows everything you did using 3-dimensional accelerometer in smart building.</abstract><pub>IEEE</pub><doi>10.1109/COGSIMA.2011.5753443</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-1667 |
ispartof | 2011 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2011, p.189-193 |
issn | 2379-1667 |
language | eng |
recordid | cdi_ieee_primary_5753443 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accelerometers Character recognition Context Context Modeling Context-aware services Gesture recognition Hidden Markov Model Hidden Markov models Intelligent sensors Pattern recognition Smart phones |
title | Gesture recognition application with Parametric Hidden Markov Model for activity-based personalized service in APRiME |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gesture%20recognition%20application%20with%20Parametric%20Hidden%20Markov%20Model%20for%20activity-based%20personalized%20service%20in%20APRiME&rft.btitle=2011%20IEEE%20International%20Multi-Disciplinary%20Conference%20on%20Cognitive%20Methods%20in%20Situation%20Awareness%20and%20Decision%20Support%20(CogSIMA)&rft.au=KyoJoong%20Oh&rft.date=2011-02&rft.spage=189&rft.epage=193&rft.pages=189-193&rft.issn=2379-1667&rft.isbn=9781612847856&rft.isbn_list=1612847854&rft_id=info:doi/10.1109/COGSIMA.2011.5753443&rft_dat=%3Cieee_6IE%3E5753443%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847846&rft.eisbn_list=9781612847849&rft.eisbn_list=9781612847863&rft.eisbn_list=1612847862&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5753443&rfr_iscdi=true |