Discriminating affective states in music induction environment using forehead bioelectric signals
Forehead bioelectric signals are reliable and rich communication channels for emotion recognition in cognitive studies. In this paper, we explored the effects of two different music induction environments on multichannel forehead bioelectric signals. Pleasant and irritating emotions were induced by...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | |
container_start_page | 343 |
container_title | |
container_volume | |
creator | Rad, R H Firoozabadi, M Rezazadeh, I M |
description | Forehead bioelectric signals are reliable and rich communication channels for emotion recognition in cognitive studies. In this paper, we explored the effects of two different music induction environments on multichannel forehead bioelectric signals. Pleasant and irritating emotions were induced by playing two different types of music that had different specifications according to the Arousal-Valence emotional space. Simultaneously, the bioelectric signals from three physical channels were recorded and filtered to extract entropy of Alpha and EMG sub-bands over 256 msec time slots. By analyzing results using the Wilcoxon test, it was shown that Alpha and EMG sub-bands are significant data channels for emotion discrimination. |
doi_str_mv | 10.1109/MECBME.2011.5752136 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5752136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5752136</ieee_id><sourcerecordid>5752136</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-74177b15c381f2090134d9debd4eb5c3629a0ae4ef50019ba659ef2978660a763</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1LopR-QTf-gZQZx88llPKQWrHpvnKScTFqHRSnSPw9lujqjubMvdIdxuYIC0RwD5vV8mmzWghAXCijBNb6gt2hFFIaAFCXbIJK2UqoGq_OQDtn7TWbAKCtnHDyls1y_irnoLU1zkyYf465HeIxJj_GtOc-BGrH-EM8j36kzGPix1OObRm6UyF94pR-4tCnI6WRF1RcoR_ok3zHm9jToQQMxZDjPvlDvmc3oQjNzjpl25fVdvlWrT9e35eP6yo6GCsj0ZgGVVtbDAIcYC0711HTSWrKVgvnwZOkoEob13itHAXhjNUavNH1lM3_YyMR7b5LJT_87s6fqv8A63Raxg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discriminating affective states in music induction environment using forehead bioelectric signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rad, R H ; Firoozabadi, M ; Rezazadeh, I M</creator><creatorcontrib>Rad, R H ; Firoozabadi, M ; Rezazadeh, I M</creatorcontrib><description>Forehead bioelectric signals are reliable and rich communication channels for emotion recognition in cognitive studies. In this paper, we explored the effects of two different music induction environments on multichannel forehead bioelectric signals. Pleasant and irritating emotions were induced by playing two different types of music that had different specifications according to the Arousal-Valence emotional space. Simultaneously, the bioelectric signals from three physical channels were recorded and filtered to extract entropy of Alpha and EMG sub-bands over 256 msec time slots. By analyzing results using the Wilcoxon test, it was shown that Alpha and EMG sub-bands are significant data channels for emotion discrimination.</description><identifier>ISSN: 0018-9294</identifier><identifier>ISBN: 1424469988</identifier><identifier>ISBN: 9781424469987</identifier><identifier>EISSN: 1558-2531</identifier><identifier>EISBN: 1424470005</identifier><identifier>EISBN: 9781424470006</identifier><identifier>EISBN: 9781424469994</identifier><identifier>EISBN: 1424469996</identifier><identifier>DOI: 10.1109/MECBME.2011.5752136</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electrodes ; Electroencephalography ; Electromyography ; Emotion ; Emotion recognition ; Entropy ; Forehead ; Forehead Bioelectric signal ; Multiple signal classification ; Music induction environment ; Statistical Entropy</subject><ispartof>2011 1st Middle East Conference on Biomedical Engineering, 2011, p.343-346</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5752136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5752136$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rad, R H</creatorcontrib><creatorcontrib>Firoozabadi, M</creatorcontrib><creatorcontrib>Rezazadeh, I M</creatorcontrib><title>Discriminating affective states in music induction environment using forehead bioelectric signals</title><title>2011 1st Middle East Conference on Biomedical Engineering</title><addtitle>MECBME</addtitle><description>Forehead bioelectric signals are reliable and rich communication channels for emotion recognition in cognitive studies. In this paper, we explored the effects of two different music induction environments on multichannel forehead bioelectric signals. Pleasant and irritating emotions were induced by playing two different types of music that had different specifications according to the Arousal-Valence emotional space. Simultaneously, the bioelectric signals from three physical channels were recorded and filtered to extract entropy of Alpha and EMG sub-bands over 256 msec time slots. By analyzing results using the Wilcoxon test, it was shown that Alpha and EMG sub-bands are significant data channels for emotion discrimination.</description><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Emotion</subject><subject>Emotion recognition</subject><subject>Entropy</subject><subject>Forehead</subject><subject>Forehead Bioelectric signal</subject><subject>Multiple signal classification</subject><subject>Music induction environment</subject><subject>Statistical Entropy</subject><issn>0018-9294</issn><issn>1558-2531</issn><isbn>1424469988</isbn><isbn>9781424469987</isbn><isbn>1424470005</isbn><isbn>9781424470006</isbn><isbn>9781424469994</isbn><isbn>1424469996</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAQRc1LopR-QTf-gZQZx88llPKQWrHpvnKScTFqHRSnSPw9lujqjubMvdIdxuYIC0RwD5vV8mmzWghAXCijBNb6gt2hFFIaAFCXbIJK2UqoGq_OQDtn7TWbAKCtnHDyls1y_irnoLU1zkyYf465HeIxJj_GtOc-BGrH-EM8j36kzGPix1OObRm6UyF94pR-4tCnI6WRF1RcoR_ok3zHm9jToQQMxZDjPvlDvmc3oQjNzjpl25fVdvlWrT9e35eP6yo6GCsj0ZgGVVtbDAIcYC0711HTSWrKVgvnwZOkoEob13itHAXhjNUavNH1lM3_YyMR7b5LJT_87s6fqv8A63Raxg</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Rad, R H</creator><creator>Firoozabadi, M</creator><creator>Rezazadeh, I M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201102</creationdate><title>Discriminating affective states in music induction environment using forehead bioelectric signals</title><author>Rad, R H ; Firoozabadi, M ; Rezazadeh, I M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-74177b15c381f2090134d9debd4eb5c3629a0ae4ef50019ba659ef2978660a763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Emotion</topic><topic>Emotion recognition</topic><topic>Entropy</topic><topic>Forehead</topic><topic>Forehead Bioelectric signal</topic><topic>Multiple signal classification</topic><topic>Music induction environment</topic><topic>Statistical Entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rad, R H</creatorcontrib><creatorcontrib>Firoozabadi, M</creatorcontrib><creatorcontrib>Rezazadeh, I M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rad, R H</au><au>Firoozabadi, M</au><au>Rezazadeh, I M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discriminating affective states in music induction environment using forehead bioelectric signals</atitle><btitle>2011 1st Middle East Conference on Biomedical Engineering</btitle><stitle>MECBME</stitle><date>2011-02</date><risdate>2011</risdate><spage>343</spage><epage>346</epage><pages>343-346</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><isbn>1424469988</isbn><isbn>9781424469987</isbn><eisbn>1424470005</eisbn><eisbn>9781424470006</eisbn><eisbn>9781424469994</eisbn><eisbn>1424469996</eisbn><abstract>Forehead bioelectric signals are reliable and rich communication channels for emotion recognition in cognitive studies. In this paper, we explored the effects of two different music induction environments on multichannel forehead bioelectric signals. Pleasant and irritating emotions were induced by playing two different types of music that had different specifications according to the Arousal-Valence emotional space. Simultaneously, the bioelectric signals from three physical channels were recorded and filtered to extract entropy of Alpha and EMG sub-bands over 256 msec time slots. By analyzing results using the Wilcoxon test, it was shown that Alpha and EMG sub-bands are significant data channels for emotion discrimination.</abstract><pub>IEEE</pub><doi>10.1109/MECBME.2011.5752136</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9294 |
ispartof | 2011 1st Middle East Conference on Biomedical Engineering, 2011, p.343-346 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_ieee_primary_5752136 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Electrodes Electroencephalography Electromyography Emotion Emotion recognition Entropy Forehead Forehead Bioelectric signal Multiple signal classification Music induction environment Statistical Entropy |
title | Discriminating affective states in music induction environment using forehead bioelectric signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discriminating%20affective%20states%20in%20music%20induction%20environment%20using%20forehead%20bioelectric%20signals&rft.btitle=2011%201st%20Middle%20East%20Conference%20on%20Biomedical%20Engineering&rft.au=Rad,%20R%20H&rft.date=2011-02&rft.spage=343&rft.epage=346&rft.pages=343-346&rft.issn=0018-9294&rft.eissn=1558-2531&rft.isbn=1424469988&rft.isbn_list=9781424469987&rft_id=info:doi/10.1109/MECBME.2011.5752136&rft_dat=%3Cieee_6IE%3E5752136%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424470005&rft.eisbn_list=9781424470006&rft.eisbn_list=9781424469994&rft.eisbn_list=1424469996&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5752136&rfr_iscdi=true |