Discriminating affective states in music induction environment using forehead bioelectric signals

Forehead bioelectric signals are reliable and rich communication channels for emotion recognition in cognitive studies. In this paper, we explored the effects of two different music induction environments on multichannel forehead bioelectric signals. Pleasant and irritating emotions were induced by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rad, R H, Firoozabadi, M, Rezazadeh, I M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue
container_start_page 343
container_title
container_volume
creator Rad, R H
Firoozabadi, M
Rezazadeh, I M
description Forehead bioelectric signals are reliable and rich communication channels for emotion recognition in cognitive studies. In this paper, we explored the effects of two different music induction environments on multichannel forehead bioelectric signals. Pleasant and irritating emotions were induced by playing two different types of music that had different specifications according to the Arousal-Valence emotional space. Simultaneously, the bioelectric signals from three physical channels were recorded and filtered to extract entropy of Alpha and EMG sub-bands over 256 msec time slots. By analyzing results using the Wilcoxon test, it was shown that Alpha and EMG sub-bands are significant data channels for emotion discrimination.
doi_str_mv 10.1109/MECBME.2011.5752136
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5752136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5752136</ieee_id><sourcerecordid>5752136</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-74177b15c381f2090134d9debd4eb5c3629a0ae4ef50019ba659ef2978660a763</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1LopR-QTf-gZQZx88llPKQWrHpvnKScTFqHRSnSPw9lujqjubMvdIdxuYIC0RwD5vV8mmzWghAXCijBNb6gt2hFFIaAFCXbIJK2UqoGq_OQDtn7TWbAKCtnHDyls1y_irnoLU1zkyYf465HeIxJj_GtOc-BGrH-EM8j36kzGPix1OObRm6UyF94pR-4tCnI6WRF1RcoR_ok3zHm9jToQQMxZDjPvlDvmc3oQjNzjpl25fVdvlWrT9e35eP6yo6GCsj0ZgGVVtbDAIcYC0711HTSWrKVgvnwZOkoEob13itHAXhjNUavNH1lM3_YyMR7b5LJT_87s6fqv8A63Raxg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discriminating affective states in music induction environment using forehead bioelectric signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rad, R H ; Firoozabadi, M ; Rezazadeh, I M</creator><creatorcontrib>Rad, R H ; Firoozabadi, M ; Rezazadeh, I M</creatorcontrib><description>Forehead bioelectric signals are reliable and rich communication channels for emotion recognition in cognitive studies. In this paper, we explored the effects of two different music induction environments on multichannel forehead bioelectric signals. Pleasant and irritating emotions were induced by playing two different types of music that had different specifications according to the Arousal-Valence emotional space. Simultaneously, the bioelectric signals from three physical channels were recorded and filtered to extract entropy of Alpha and EMG sub-bands over 256 msec time slots. By analyzing results using the Wilcoxon test, it was shown that Alpha and EMG sub-bands are significant data channels for emotion discrimination.</description><identifier>ISSN: 0018-9294</identifier><identifier>ISBN: 1424469988</identifier><identifier>ISBN: 9781424469987</identifier><identifier>EISSN: 1558-2531</identifier><identifier>EISBN: 1424470005</identifier><identifier>EISBN: 9781424470006</identifier><identifier>EISBN: 9781424469994</identifier><identifier>EISBN: 1424469996</identifier><identifier>DOI: 10.1109/MECBME.2011.5752136</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electrodes ; Electroencephalography ; Electromyography ; Emotion ; Emotion recognition ; Entropy ; Forehead ; Forehead Bioelectric signal ; Multiple signal classification ; Music induction environment ; Statistical Entropy</subject><ispartof>2011 1st Middle East Conference on Biomedical Engineering, 2011, p.343-346</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5752136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5752136$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rad, R H</creatorcontrib><creatorcontrib>Firoozabadi, M</creatorcontrib><creatorcontrib>Rezazadeh, I M</creatorcontrib><title>Discriminating affective states in music induction environment using forehead bioelectric signals</title><title>2011 1st Middle East Conference on Biomedical Engineering</title><addtitle>MECBME</addtitle><description>Forehead bioelectric signals are reliable and rich communication channels for emotion recognition in cognitive studies. In this paper, we explored the effects of two different music induction environments on multichannel forehead bioelectric signals. Pleasant and irritating emotions were induced by playing two different types of music that had different specifications according to the Arousal-Valence emotional space. Simultaneously, the bioelectric signals from three physical channels were recorded and filtered to extract entropy of Alpha and EMG sub-bands over 256 msec time slots. By analyzing results using the Wilcoxon test, it was shown that Alpha and EMG sub-bands are significant data channels for emotion discrimination.</description><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Emotion</subject><subject>Emotion recognition</subject><subject>Entropy</subject><subject>Forehead</subject><subject>Forehead Bioelectric signal</subject><subject>Multiple signal classification</subject><subject>Music induction environment</subject><subject>Statistical Entropy</subject><issn>0018-9294</issn><issn>1558-2531</issn><isbn>1424469988</isbn><isbn>9781424469987</isbn><isbn>1424470005</isbn><isbn>9781424470006</isbn><isbn>9781424469994</isbn><isbn>1424469996</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAQRc1LopR-QTf-gZQZx88llPKQWrHpvnKScTFqHRSnSPw9lujqjubMvdIdxuYIC0RwD5vV8mmzWghAXCijBNb6gt2hFFIaAFCXbIJK2UqoGq_OQDtn7TWbAKCtnHDyls1y_irnoLU1zkyYf465HeIxJj_GtOc-BGrH-EM8j36kzGPix1OObRm6UyF94pR-4tCnI6WRF1RcoR_ok3zHm9jToQQMxZDjPvlDvmc3oQjNzjpl25fVdvlWrT9e35eP6yo6GCsj0ZgGVVtbDAIcYC0711HTSWrKVgvnwZOkoEob13itHAXhjNUavNH1lM3_YyMR7b5LJT_87s6fqv8A63Raxg</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Rad, R H</creator><creator>Firoozabadi, M</creator><creator>Rezazadeh, I M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201102</creationdate><title>Discriminating affective states in music induction environment using forehead bioelectric signals</title><author>Rad, R H ; Firoozabadi, M ; Rezazadeh, I M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-74177b15c381f2090134d9debd4eb5c3629a0ae4ef50019ba659ef2978660a763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Emotion</topic><topic>Emotion recognition</topic><topic>Entropy</topic><topic>Forehead</topic><topic>Forehead Bioelectric signal</topic><topic>Multiple signal classification</topic><topic>Music induction environment</topic><topic>Statistical Entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rad, R H</creatorcontrib><creatorcontrib>Firoozabadi, M</creatorcontrib><creatorcontrib>Rezazadeh, I M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rad, R H</au><au>Firoozabadi, M</au><au>Rezazadeh, I M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discriminating affective states in music induction environment using forehead bioelectric signals</atitle><btitle>2011 1st Middle East Conference on Biomedical Engineering</btitle><stitle>MECBME</stitle><date>2011-02</date><risdate>2011</risdate><spage>343</spage><epage>346</epage><pages>343-346</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><isbn>1424469988</isbn><isbn>9781424469987</isbn><eisbn>1424470005</eisbn><eisbn>9781424470006</eisbn><eisbn>9781424469994</eisbn><eisbn>1424469996</eisbn><abstract>Forehead bioelectric signals are reliable and rich communication channels for emotion recognition in cognitive studies. In this paper, we explored the effects of two different music induction environments on multichannel forehead bioelectric signals. Pleasant and irritating emotions were induced by playing two different types of music that had different specifications according to the Arousal-Valence emotional space. Simultaneously, the bioelectric signals from three physical channels were recorded and filtered to extract entropy of Alpha and EMG sub-bands over 256 msec time slots. By analyzing results using the Wilcoxon test, it was shown that Alpha and EMG sub-bands are significant data channels for emotion discrimination.</abstract><pub>IEEE</pub><doi>10.1109/MECBME.2011.5752136</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof 2011 1st Middle East Conference on Biomedical Engineering, 2011, p.343-346
issn 0018-9294
1558-2531
language eng
recordid cdi_ieee_primary_5752136
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Electrodes
Electroencephalography
Electromyography
Emotion
Emotion recognition
Entropy
Forehead
Forehead Bioelectric signal
Multiple signal classification
Music induction environment
Statistical Entropy
title Discriminating affective states in music induction environment using forehead bioelectric signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discriminating%20affective%20states%20in%20music%20induction%20environment%20using%20forehead%20bioelectric%20signals&rft.btitle=2011%201st%20Middle%20East%20Conference%20on%20Biomedical%20Engineering&rft.au=Rad,%20R%20H&rft.date=2011-02&rft.spage=343&rft.epage=346&rft.pages=343-346&rft.issn=0018-9294&rft.eissn=1558-2531&rft.isbn=1424469988&rft.isbn_list=9781424469987&rft_id=info:doi/10.1109/MECBME.2011.5752136&rft_dat=%3Cieee_6IE%3E5752136%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424470005&rft.eisbn_list=9781424470006&rft.eisbn_list=9781424469994&rft.eisbn_list=1424469996&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5752136&rfr_iscdi=true