Using Neural Network to Model the Relationship between Plant Surface Color and its Pigment

Combining the intelligent algorithm such as BP neural network and support vector maching (SVM) with traditional chemical method, this paper models the relationship between plant surface color and its pigment. Using the neural network model constructed above, people can figure out the content of plan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zeng Qingmao, Zhang Tong, Zhu Tonglin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue
container_start_page 303
container_title
container_volume 2
creator Zeng Qingmao
Zhang Tong
Zhu Tonglin
description Combining the intelligent algorithm such as BP neural network and support vector maching (SVM) with traditional chemical method, this paper models the relationship between plant surface color and its pigment. Using the neural network model constructed above, people can figure out the content of plant pigments by getting the corresponding plant surface color information. Compared with the traditional modeling methods, this method can significantly save time and experimental supplies. Furthermore, it is easy to implement because it needn't touch samples and doesn't cause any damage to samples. So this method provides a practical tool for non-destructive measurements of plant pigments and solutions to explore the mystery of plant color.
doi_str_mv 10.1109/ICICTA.2011.361
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5750886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5750886</ieee_id><sourcerecordid>5750886</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-93ecf7c860997b704f062027adff1bf7267fb2ad255bdb4b439a7c9898c758703</originalsourceid><addsrcrecordid>eNotjE1LwzAchwMy0M2dPXjJF2hN0ubtOIovhalD68XLSNp_tmjWjjRD_PZW9Lk88PDjh9AVJTmlRN_UVV01q5wRSvNC0DM0p4IyVTKl-QzNf7tmRAp1jpbj-EEmhNCS0gv0_jb6foef4BRNmJS-hviJ04Afhw4CTnvALxBM8kM_7v0R22kB0ONNMH3Cr6foTAu4GsIQsek77NOIN353gD5dopkzYYTlvxeoubttqods_XxfV6t15jVJmS6gdbJVgmgtrSSlI4IRJk3nHLVOMiGdZaZjnNvOlrYstJGtVlq1kitJigW6_rv1ALA9Rn8w8XvLJSdKieIHW7pSMw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using Neural Network to Model the Relationship between Plant Surface Color and its Pigment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zeng Qingmao ; Zhang Tong ; Zhu Tonglin</creator><creatorcontrib>Zeng Qingmao ; Zhang Tong ; Zhu Tonglin</creatorcontrib><description>Combining the intelligent algorithm such as BP neural network and support vector maching (SVM) with traditional chemical method, this paper models the relationship between plant surface color and its pigment. Using the neural network model constructed above, people can figure out the content of plant pigments by getting the corresponding plant surface color information. Compared with the traditional modeling methods, this method can significantly save time and experimental supplies. Furthermore, it is easy to implement because it needn't touch samples and doesn't cause any damage to samples. So this method provides a practical tool for non-destructive measurements of plant pigments and solutions to explore the mystery of plant color.</description><identifier>ISBN: 1612842895</identifier><identifier>ISBN: 9781612842899</identifier><identifier>DOI: 10.1109/ICICTA.2011.361</identifier><identifier>LCCN: 2011920768</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; BP neural network ; Chinese kale stems ; Data models ; HSV mean ; Image color analysis ; Machine vision ; Pigments ; plant pigment ; Support vector machine (SVM) ; Support vector machines ; Training</subject><ispartof>2011 Fourth International Conference on Intelligent Computation Technology and Automation, 2011, Vol.2, p.303-307</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5750886$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5750886$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng Qingmao</creatorcontrib><creatorcontrib>Zhang Tong</creatorcontrib><creatorcontrib>Zhu Tonglin</creatorcontrib><title>Using Neural Network to Model the Relationship between Plant Surface Color and its Pigment</title><title>2011 Fourth International Conference on Intelligent Computation Technology and Automation</title><addtitle>icicta</addtitle><description>Combining the intelligent algorithm such as BP neural network and support vector maching (SVM) with traditional chemical method, this paper models the relationship between plant surface color and its pigment. Using the neural network model constructed above, people can figure out the content of plant pigments by getting the corresponding plant surface color information. Compared with the traditional modeling methods, this method can significantly save time and experimental supplies. Furthermore, it is easy to implement because it needn't touch samples and doesn't cause any damage to samples. So this method provides a practical tool for non-destructive measurements of plant pigments and solutions to explore the mystery of plant color.</description><subject>Artificial neural networks</subject><subject>BP neural network</subject><subject>Chinese kale stems</subject><subject>Data models</subject><subject>HSV mean</subject><subject>Image color analysis</subject><subject>Machine vision</subject><subject>Pigments</subject><subject>plant pigment</subject><subject>Support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Training</subject><isbn>1612842895</isbn><isbn>9781612842899</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE1LwzAchwMy0M2dPXjJF2hN0ubtOIovhalD68XLSNp_tmjWjjRD_PZW9Lk88PDjh9AVJTmlRN_UVV01q5wRSvNC0DM0p4IyVTKl-QzNf7tmRAp1jpbj-EEmhNCS0gv0_jb6foef4BRNmJS-hviJ04Afhw4CTnvALxBM8kM_7v0R22kB0ONNMH3Cr6foTAu4GsIQsek77NOIN353gD5dopkzYYTlvxeoubttqods_XxfV6t15jVJmS6gdbJVgmgtrSSlI4IRJk3nHLVOMiGdZaZjnNvOlrYstJGtVlq1kitJigW6_rv1ALA9Rn8w8XvLJSdKieIHW7pSMw</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Zeng Qingmao</creator><creator>Zhang Tong</creator><creator>Zhu Tonglin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201103</creationdate><title>Using Neural Network to Model the Relationship between Plant Surface Color and its Pigment</title><author>Zeng Qingmao ; Zhang Tong ; Zhu Tonglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-93ecf7c860997b704f062027adff1bf7267fb2ad255bdb4b439a7c9898c758703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>BP neural network</topic><topic>Chinese kale stems</topic><topic>Data models</topic><topic>HSV mean</topic><topic>Image color analysis</topic><topic>Machine vision</topic><topic>Pigments</topic><topic>plant pigment</topic><topic>Support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeng Qingmao</creatorcontrib><creatorcontrib>Zhang Tong</creatorcontrib><creatorcontrib>Zhu Tonglin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng Qingmao</au><au>Zhang Tong</au><au>Zhu Tonglin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using Neural Network to Model the Relationship between Plant Surface Color and its Pigment</atitle><btitle>2011 Fourth International Conference on Intelligent Computation Technology and Automation</btitle><stitle>icicta</stitle><date>2011-03</date><risdate>2011</risdate><volume>2</volume><spage>303</spage><epage>307</epage><pages>303-307</pages><isbn>1612842895</isbn><isbn>9781612842899</isbn><abstract>Combining the intelligent algorithm such as BP neural network and support vector maching (SVM) with traditional chemical method, this paper models the relationship between plant surface color and its pigment. Using the neural network model constructed above, people can figure out the content of plant pigments by getting the corresponding plant surface color information. Compared with the traditional modeling methods, this method can significantly save time and experimental supplies. Furthermore, it is easy to implement because it needn't touch samples and doesn't cause any damage to samples. So this method provides a practical tool for non-destructive measurements of plant pigments and solutions to explore the mystery of plant color.</abstract><pub>IEEE</pub><doi>10.1109/ICICTA.2011.361</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612842895
ispartof 2011 Fourth International Conference on Intelligent Computation Technology and Automation, 2011, Vol.2, p.303-307
issn
language eng
recordid cdi_ieee_primary_5750886
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
BP neural network
Chinese kale stems
Data models
HSV mean
Image color analysis
Machine vision
Pigments
plant pigment
Support vector machine (SVM)
Support vector machines
Training
title Using Neural Network to Model the Relationship between Plant Surface Color and its Pigment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20Neural%20Network%20to%20Model%20the%20Relationship%20between%20Plant%20Surface%20Color%20and%20its%20Pigment&rft.btitle=2011%20Fourth%20International%20Conference%20on%20Intelligent%20Computation%20Technology%20and%20Automation&rft.au=Zeng%20Qingmao&rft.date=2011-03&rft.volume=2&rft.spage=303&rft.epage=307&rft.pages=303-307&rft.isbn=1612842895&rft.isbn_list=9781612842899&rft_id=info:doi/10.1109/ICICTA.2011.361&rft_dat=%3Cieee_6IE%3E5750886%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5750886&rfr_iscdi=true