Acoustic Agglomeration of PM2.5 Enhanced by Additional Particles

The acoustic agglomeration model of suspended PM 2.5 subjected to a standing-wave sound field is established based on the direct simulation Monte Carlo (DSMC) method. The particle motion and agglomeration are numerically investigated, and the simulated result is compared with experiment to validate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fan Fengxian, Chen Houtao, Yuan Zhulin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1041
container_issue
container_start_page 1038
container_title
container_volume
creator Fan Fengxian
Chen Houtao
Yuan Zhulin
description The acoustic agglomeration model of suspended PM 2.5 subjected to a standing-wave sound field is established based on the direct simulation Monte Carlo (DSMC) method. The particle motion and agglomeration are numerically investigated, and the simulated result is compared with experiment to validate the agglomeration model and the algorithm. The results show that the dynamic behaviors of sub micron particles and micron particles under the effect of sound field are very different, and that the removal efficiency of PM 2.5 by acoustic agglomeration can be greatly improved by adding large particles into the gas stream. In a typical case, the PM 2.5 removal efficiency can be increased from 21.5% to 47.4% with additional particles.
doi_str_mv 10.1109/CDCIEM.2011.579
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5747991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5747991</ieee_id><sourcerecordid>5747991</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-eb76b69f5b7e4732afc4b31ac7d5a50fffc12c2efac9df495c616dc706af5b5d3</originalsourceid><addsrcrecordid>eNotjLtOw0AUBRchJEhITUGzP2Czd5_eDssYiJSIFCnoout9hEWOjWxT5O8xgtNMMZpDyB2wHIDZh-qpWtfbnDOAXBl7QRbMaKukUIxfkgVo4IXkpni_Jqtx_GTztC4sEzfksXT99zglR8vjse1PYcAp9R3tI91tea5o3X1g54KnzZmW3qdfiy3d4TBHbRhvyVXEdgyrfy7J_rneV6_Z5u1lXZWbLFk2ZaExutE2qsYEaQTH6GQjAJ3xChWLMTrgjoeIzvoorXIatHeGaZwb5cWS3P_dphDC4WtIJxzOB2WksRbED0WlSc4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Acoustic Agglomeration of PM2.5 Enhanced by Additional Particles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fan Fengxian ; Chen Houtao ; Yuan Zhulin</creator><creatorcontrib>Fan Fengxian ; Chen Houtao ; Yuan Zhulin</creatorcontrib><description>The acoustic agglomeration model of suspended PM 2.5 subjected to a standing-wave sound field is established based on the direct simulation Monte Carlo (DSMC) method. The particle motion and agglomeration are numerically investigated, and the simulated result is compared with experiment to validate the agglomeration model and the algorithm. The results show that the dynamic behaviors of sub micron particles and micron particles under the effect of sound field are very different, and that the removal efficiency of PM 2.5 by acoustic agglomeration can be greatly improved by adding large particles into the gas stream. In a typical case, the PM 2.5 removal efficiency can be increased from 21.5% to 47.4% with additional particles.</description><identifier>ISBN: 161284278X</identifier><identifier>ISBN: 9781612842783</identifier><identifier>EISBN: 0769543502</identifier><identifier>EISBN: 9780769543505</identifier><identifier>DOI: 10.1109/CDCIEM.2011.579</identifier><language>eng</language><publisher>IEEE</publisher><subject>acoustic agglomeration ; Acoustics ; Computational modeling ; Equations ; fine particles (PM2.5) ; Mathematical model ; Monte Carlo method ; Numerical models ; removal efficiency ; sound field ; Trajectory ; Vibrations</subject><ispartof>2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, 2011, p.1038-1041</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5747991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5747991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan Fengxian</creatorcontrib><creatorcontrib>Chen Houtao</creatorcontrib><creatorcontrib>Yuan Zhulin</creatorcontrib><title>Acoustic Agglomeration of PM2.5 Enhanced by Additional Particles</title><title>2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring</title><addtitle>cdciem</addtitle><description>The acoustic agglomeration model of suspended PM 2.5 subjected to a standing-wave sound field is established based on the direct simulation Monte Carlo (DSMC) method. The particle motion and agglomeration are numerically investigated, and the simulated result is compared with experiment to validate the agglomeration model and the algorithm. The results show that the dynamic behaviors of sub micron particles and micron particles under the effect of sound field are very different, and that the removal efficiency of PM 2.5 by acoustic agglomeration can be greatly improved by adding large particles into the gas stream. In a typical case, the PM 2.5 removal efficiency can be increased from 21.5% to 47.4% with additional particles.</description><subject>acoustic agglomeration</subject><subject>Acoustics</subject><subject>Computational modeling</subject><subject>Equations</subject><subject>fine particles (PM2.5)</subject><subject>Mathematical model</subject><subject>Monte Carlo method</subject><subject>Numerical models</subject><subject>removal efficiency</subject><subject>sound field</subject><subject>Trajectory</subject><subject>Vibrations</subject><isbn>161284278X</isbn><isbn>9781612842783</isbn><isbn>0769543502</isbn><isbn>9780769543505</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOw0AUBRchJEhITUGzP2Czd5_eDssYiJSIFCnoout9hEWOjWxT5O8xgtNMMZpDyB2wHIDZh-qpWtfbnDOAXBl7QRbMaKukUIxfkgVo4IXkpni_Jqtx_GTztC4sEzfksXT99zglR8vjse1PYcAp9R3tI91tea5o3X1g54KnzZmW3qdfiy3d4TBHbRhvyVXEdgyrfy7J_rneV6_Z5u1lXZWbLFk2ZaExutE2qsYEaQTH6GQjAJ3xChWLMTrgjoeIzvoorXIatHeGaZwb5cWS3P_dphDC4WtIJxzOB2WksRbED0WlSc4</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Fan Fengxian</creator><creator>Chen Houtao</creator><creator>Yuan Zhulin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201102</creationdate><title>Acoustic Agglomeration of PM2.5 Enhanced by Additional Particles</title><author>Fan Fengxian ; Chen Houtao ; Yuan Zhulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-eb76b69f5b7e4732afc4b31ac7d5a50fffc12c2efac9df495c616dc706af5b5d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>acoustic agglomeration</topic><topic>Acoustics</topic><topic>Computational modeling</topic><topic>Equations</topic><topic>fine particles (PM2.5)</topic><topic>Mathematical model</topic><topic>Monte Carlo method</topic><topic>Numerical models</topic><topic>removal efficiency</topic><topic>sound field</topic><topic>Trajectory</topic><topic>Vibrations</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan Fengxian</creatorcontrib><creatorcontrib>Chen Houtao</creatorcontrib><creatorcontrib>Yuan Zhulin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan Fengxian</au><au>Chen Houtao</au><au>Yuan Zhulin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Acoustic Agglomeration of PM2.5 Enhanced by Additional Particles</atitle><btitle>2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring</btitle><stitle>cdciem</stitle><date>2011-02</date><risdate>2011</risdate><spage>1038</spage><epage>1041</epage><pages>1038-1041</pages><isbn>161284278X</isbn><isbn>9781612842783</isbn><eisbn>0769543502</eisbn><eisbn>9780769543505</eisbn><abstract>The acoustic agglomeration model of suspended PM 2.5 subjected to a standing-wave sound field is established based on the direct simulation Monte Carlo (DSMC) method. The particle motion and agglomeration are numerically investigated, and the simulated result is compared with experiment to validate the agglomeration model and the algorithm. The results show that the dynamic behaviors of sub micron particles and micron particles under the effect of sound field are very different, and that the removal efficiency of PM 2.5 by acoustic agglomeration can be greatly improved by adding large particles into the gas stream. In a typical case, the PM 2.5 removal efficiency can be increased from 21.5% to 47.4% with additional particles.</abstract><pub>IEEE</pub><doi>10.1109/CDCIEM.2011.579</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 161284278X
ispartof 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, 2011, p.1038-1041
issn
language eng
recordid cdi_ieee_primary_5747991
source IEEE Electronic Library (IEL) Conference Proceedings
subjects acoustic agglomeration
Acoustics
Computational modeling
Equations
fine particles (PM2.5)
Mathematical model
Monte Carlo method
Numerical models
removal efficiency
sound field
Trajectory
Vibrations
title Acoustic Agglomeration of PM2.5 Enhanced by Additional Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Acoustic%20Agglomeration%20of%20PM2.5%20Enhanced%20by%20Additional%20Particles&rft.btitle=2011%20International%20Conference%20on%20Computer%20Distributed%20Control%20and%20Intelligent%20Environmental%20Monitoring&rft.au=Fan%20Fengxian&rft.date=2011-02&rft.spage=1038&rft.epage=1041&rft.pages=1038-1041&rft.isbn=161284278X&rft.isbn_list=9781612842783&rft_id=info:doi/10.1109/CDCIEM.2011.579&rft_dat=%3Cieee_6IE%3E5747991%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769543502&rft.eisbn_list=9780769543505&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5747991&rfr_iscdi=true