Categorical decision making by people, committees, and crowds

Choosing among alternatives is a basic decision problem faced by people in all aspects of life, whether individually or collectively. Results in cognitive science suggest that people perform approximately Bayes-optimal decision making but that cognitive limitations require the coarse categorization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Varshney, Lav R, Rhim, Joong Bum, Varshney, Kush R, Goyal, Vivek K
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title
container_volume
creator Varshney, Lav R
Rhim, Joong Bum
Varshney, Kush R
Goyal, Vivek K
description Choosing among alternatives is a basic decision problem faced by people in all aspects of life, whether individually or collectively. Results in cognitive science suggest that people perform approximately Bayes-optimal decision making but that cognitive limitations require the coarse categorization of ensembles of problems rather than the application of optimal decision rules on a problem-by-problem basis. These observations motivate the development of a mathematical theory for Bayesian hypothesis testing with quantized prior information. This paper reviews recent results in minimum Bayes risk quantizer design and its economic implications. In the context of individual decision making, the theory explains differentials in false alarm and missed detection error rates for majority and minority subpopulations without appealing to a taste for discrimination. In group decision making by majority vote, quantizer design becomes a strategic form game. Nash equilibria are guaranteed to exist but often are not Pareto optimal. The analysis reveals precise senses in which a team of agents performs best when it is diverse and shares common goals. Finally, the implications of the theory for crowdsourcing are discussed.
doi_str_mv 10.1109/ITA.2011.5743615
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5743615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5743615</ieee_id><sourcerecordid>5743615</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1325-db226a9273dd9ba565f34f9107348871be9c9b4c001ad1325d2a0468fbe4e8473</originalsourceid><addsrcrecordid>eNpVjztLA0EUhUdEUOL2gs38gGy889qZKSzCojEQsIl1mMfdMLovdhYk_96IaTzN4Su-A4eQBwYrxsA-bffrFQfGVkpLUTF1RQqrDZNKazizvP7HoG9JkfMnnFOBERbuyHPtZjwOUwqupRFDymnoaee-Un-k_kRHHMYWlzQMXZfmGTEvqesjDdPwHfM9uWlcm7G49IJ8vL7s67dy977Z1utdmZjgqoye88pZrkWM1jtVqUbIxjLQQhqjmUcbrJcBgLn4a0TuQFam8SjRSC0W5PFvNyHiYZxS56bT4XJa_ADEV0i0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Categorical decision making by people, committees, and crowds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Varshney, Lav R ; Rhim, Joong Bum ; Varshney, Kush R ; Goyal, Vivek K</creator><creatorcontrib>Varshney, Lav R ; Rhim, Joong Bum ; Varshney, Kush R ; Goyal, Vivek K</creatorcontrib><description>Choosing among alternatives is a basic decision problem faced by people in all aspects of life, whether individually or collectively. Results in cognitive science suggest that people perform approximately Bayes-optimal decision making but that cognitive limitations require the coarse categorization of ensembles of problems rather than the application of optimal decision rules on a problem-by-problem basis. These observations motivate the development of a mathematical theory for Bayesian hypothesis testing with quantized prior information. This paper reviews recent results in minimum Bayes risk quantizer design and its economic implications. In the context of individual decision making, the theory explains differentials in false alarm and missed detection error rates for majority and minority subpopulations without appealing to a taste for discrimination. In group decision making by majority vote, quantizer design becomes a strategic form game. Nash equilibria are guaranteed to exist but often are not Pareto optimal. The analysis reveals precise senses in which a team of agents performs best when it is diverse and shares common goals. Finally, the implications of the theory for crowdsourcing are discussed.</description><identifier>ISBN: 9781457703607</identifier><identifier>ISBN: 1457703602</identifier><identifier>EISBN: 9781457703614</identifier><identifier>EISBN: 1457703610</identifier><identifier>DOI: 10.1109/ITA.2011.5743615</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Economics ; Error probability ; Games ; Nash equilibrium ; Quantization</subject><ispartof>2011 Information Theory and Applications Workshop, 2011, p.1-10</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5743615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5743615$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Varshney, Lav R</creatorcontrib><creatorcontrib>Rhim, Joong Bum</creatorcontrib><creatorcontrib>Varshney, Kush R</creatorcontrib><creatorcontrib>Goyal, Vivek K</creatorcontrib><title>Categorical decision making by people, committees, and crowds</title><title>2011 Information Theory and Applications Workshop</title><addtitle>ITA</addtitle><description>Choosing among alternatives is a basic decision problem faced by people in all aspects of life, whether individually or collectively. Results in cognitive science suggest that people perform approximately Bayes-optimal decision making but that cognitive limitations require the coarse categorization of ensembles of problems rather than the application of optimal decision rules on a problem-by-problem basis. These observations motivate the development of a mathematical theory for Bayesian hypothesis testing with quantized prior information. This paper reviews recent results in minimum Bayes risk quantizer design and its economic implications. In the context of individual decision making, the theory explains differentials in false alarm and missed detection error rates for majority and minority subpopulations without appealing to a taste for discrimination. In group decision making by majority vote, quantizer design becomes a strategic form game. Nash equilibria are guaranteed to exist but often are not Pareto optimal. The analysis reveals precise senses in which a team of agents performs best when it is diverse and shares common goals. Finally, the implications of the theory for crowdsourcing are discussed.</description><subject>Biological system modeling</subject><subject>Economics</subject><subject>Error probability</subject><subject>Games</subject><subject>Nash equilibrium</subject><subject>Quantization</subject><isbn>9781457703607</isbn><isbn>1457703602</isbn><isbn>9781457703614</isbn><isbn>1457703610</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjztLA0EUhUdEUOL2gs38gGy889qZKSzCojEQsIl1mMfdMLovdhYk_96IaTzN4Su-A4eQBwYrxsA-bffrFQfGVkpLUTF1RQqrDZNKazizvP7HoG9JkfMnnFOBERbuyHPtZjwOUwqupRFDymnoaee-Un-k_kRHHMYWlzQMXZfmGTEvqesjDdPwHfM9uWlcm7G49IJ8vL7s67dy977Z1utdmZjgqoye88pZrkWM1jtVqUbIxjLQQhqjmUcbrJcBgLn4a0TuQFam8SjRSC0W5PFvNyHiYZxS56bT4XJa_ADEV0i0</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Varshney, Lav R</creator><creator>Rhim, Joong Bum</creator><creator>Varshney, Kush R</creator><creator>Goyal, Vivek K</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201102</creationdate><title>Categorical decision making by people, committees, and crowds</title><author>Varshney, Lav R ; Rhim, Joong Bum ; Varshney, Kush R ; Goyal, Vivek K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1325-db226a9273dd9ba565f34f9107348871be9c9b4c001ad1325d2a0468fbe4e8473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological system modeling</topic><topic>Economics</topic><topic>Error probability</topic><topic>Games</topic><topic>Nash equilibrium</topic><topic>Quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Varshney, Lav R</creatorcontrib><creatorcontrib>Rhim, Joong Bum</creatorcontrib><creatorcontrib>Varshney, Kush R</creatorcontrib><creatorcontrib>Goyal, Vivek K</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varshney, Lav R</au><au>Rhim, Joong Bum</au><au>Varshney, Kush R</au><au>Goyal, Vivek K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Categorical decision making by people, committees, and crowds</atitle><btitle>2011 Information Theory and Applications Workshop</btitle><stitle>ITA</stitle><date>2011-02</date><risdate>2011</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><isbn>9781457703607</isbn><isbn>1457703602</isbn><eisbn>9781457703614</eisbn><eisbn>1457703610</eisbn><abstract>Choosing among alternatives is a basic decision problem faced by people in all aspects of life, whether individually or collectively. Results in cognitive science suggest that people perform approximately Bayes-optimal decision making but that cognitive limitations require the coarse categorization of ensembles of problems rather than the application of optimal decision rules on a problem-by-problem basis. These observations motivate the development of a mathematical theory for Bayesian hypothesis testing with quantized prior information. This paper reviews recent results in minimum Bayes risk quantizer design and its economic implications. In the context of individual decision making, the theory explains differentials in false alarm and missed detection error rates for majority and minority subpopulations without appealing to a taste for discrimination. In group decision making by majority vote, quantizer design becomes a strategic form game. Nash equilibria are guaranteed to exist but often are not Pareto optimal. The analysis reveals precise senses in which a team of agents performs best when it is diverse and shares common goals. Finally, the implications of the theory for crowdsourcing are discussed.</abstract><pub>IEEE</pub><doi>10.1109/ITA.2011.5743615</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457703607
ispartof 2011 Information Theory and Applications Workshop, 2011, p.1-10
issn
language eng
recordid cdi_ieee_primary_5743615
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological system modeling
Economics
Error probability
Games
Nash equilibrium
Quantization
title Categorical decision making by people, committees, and crowds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Categorical%20decision%20making%20by%20people,%20committees,%20and%20crowds&rft.btitle=2011%20Information%20Theory%20and%20Applications%20Workshop&rft.au=Varshney,%20Lav%20R&rft.date=2011-02&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.isbn=9781457703607&rft.isbn_list=1457703602&rft_id=info:doi/10.1109/ITA.2011.5743615&rft_dat=%3Cieee_6IE%3E5743615%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457703614&rft.eisbn_list=1457703610&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5743615&rfr_iscdi=true