Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection

This paper presents the development and characterization of self-aligned carbon nanotube thin-film transistors (CNT-TFT) on flexible substrates. The channel consisting of dense, aligned, 99% pure semiconducting single-walled CNT is deposited using the dip-coat technique on a sacrificial substrate an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2012-01, Vol.11 (1), p.44-50
Hauptverfasser: Pham, D. T., Subbaraman, H., Chen, M. Y., Xiaochuan Xu, Chen, R. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 44
container_title IEEE transactions on nanotechnology
container_volume 11
creator Pham, D. T.
Subbaraman, H.
Chen, M. Y.
Xiaochuan Xu
Chen, R. T.
description This paper presents the development and characterization of self-aligned carbon nanotube thin-film transistors (CNT-TFT) on flexible substrates. The channel consisting of dense, aligned, 99% pure semiconducting single-walled CNT is deposited using the dip-coat technique on a sacrificial substrate and then transferred on the device substrate. The source, drain, and gate structures are formed by the ink-jet printing technique. A novel source-drain contact formation using wet droplet of silver ink prior to the CNT thin-film application has been developed to enhance source-drain contact with the CNT channel. Bending test data on CNT-TFT test structures show minimal change (less than 10%) in their performance. Moreover, a special multilayer metal interconnection technology is demonstrated for flexible electronics applications. Bending test data on via test structure show change in resistance by less than 5%.
doi_str_mv 10.1109/TNANO.2011.2130535
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5738348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5738348</ieee_id><sourcerecordid>2556567331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7a9c5f3b6cd21c18c1f22913d2a4104e8b040c86159a7788b0949ede67f7037f3</originalsourceid><addsrcrecordid>eNpdkcFuEzEQhlcIJErhBeBiISFx2eBZ22vvMQoEKrXpIUFwW3m9s9SVYxfbi-hL8Mw4TdRDTzOj-ebXzPxV9RboAoB2n3ab5eZ60VCARQOMCiaeVWfQcagpVeJ5yQVra2jEz5fVq5RuKQXZCnVW_duim-qls788jmSl4xA82Wgf8jwg2d1YX6-t25Nd1D7ZlENMpBBrh3_t4JBs5yHlqDMm8sPmG7IJf9CRbZijwfpz1NaTVfBZm0y0H8nV7LJ1-h4jucKsHbnwGaMJ3qPJNvjX1YtJu4RvTvG8-r7-slt9qy-vv16slpe1YULmWurOiIkNrRkbMKAMTE3TARsbzYFyVAPl1KgWRKelVKXseIcjtnKSlMmJnVcfj7p3MfyeMeV-b5NB57THMKceKFClhOJQ0PdP0NtynS_b9R1wKdpW8AI1R8jEkFLEqb-Ldq_jfVHqDw71Dw71B4f6k0Nl6MNJWSej3VRebGx6nGwElwU8iL87chYRH9tCMsW4Yv8B4tGasQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914756654</pqid></control><display><type>article</type><title>Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection</title><source>IEEE Electronic Library (IEL)</source><creator>Pham, D. T. ; Subbaraman, H. ; Chen, M. Y. ; Xiaochuan Xu ; Chen, R. T.</creator><creatorcontrib>Pham, D. T. ; Subbaraman, H. ; Chen, M. Y. ; Xiaochuan Xu ; Chen, R. T.</creatorcontrib><description>This paper presents the development and characterization of self-aligned carbon nanotube thin-film transistors (CNT-TFT) on flexible substrates. The channel consisting of dense, aligned, 99% pure semiconducting single-walled CNT is deposited using the dip-coat technique on a sacrificial substrate and then transferred on the device substrate. The source, drain, and gate structures are formed by the ink-jet printing technique. A novel source-drain contact formation using wet droplet of silver ink prior to the CNT thin-film application has been developed to enhance source-drain contact with the CNT channel. Bending test data on CNT-TFT test structures show minimal change (less than 10%) in their performance. Moreover, a special multilayer metal interconnection technology is demonstrated for flexible electronics applications. Bending test data on via test structure show change in resistance by less than 5%.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2011.2130535</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bend tests ; Carbon nanotube (CNT) ; Carbon nanotubes ; Channels ; Contact ; Design. Technologies. Operation analysis. Testing ; dip-coat technique ; Droplets ; Electronics ; Exact sciences and technology ; flexible electronics ; Ink ; Integrated circuit interconnections ; Integrated circuits ; Interconnection ; Logic gates ; Molecular electronics, nanoelectronics ; Multilayers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silver ; single-walled carbon nanotube (SWCNT) ; Substrates ; Testing, measurement, noise and reliability ; Thin films ; thin-film transistor (TFT) ; Transistors</subject><ispartof>IEEE transactions on nanotechnology, 2012-01, Vol.11 (1), p.44-50</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7a9c5f3b6cd21c18c1f22913d2a4104e8b040c86159a7788b0949ede67f7037f3</citedby><cites>FETCH-LOGICAL-c357t-7a9c5f3b6cd21c18c1f22913d2a4104e8b040c86159a7788b0949ede67f7037f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5738348$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5738348$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25473054$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, D. T.</creatorcontrib><creatorcontrib>Subbaraman, H.</creatorcontrib><creatorcontrib>Chen, M. Y.</creatorcontrib><creatorcontrib>Xiaochuan Xu</creatorcontrib><creatorcontrib>Chen, R. T.</creatorcontrib><title>Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>This paper presents the development and characterization of self-aligned carbon nanotube thin-film transistors (CNT-TFT) on flexible substrates. The channel consisting of dense, aligned, 99% pure semiconducting single-walled CNT is deposited using the dip-coat technique on a sacrificial substrate and then transferred on the device substrate. The source, drain, and gate structures are formed by the ink-jet printing technique. A novel source-drain contact formation using wet droplet of silver ink prior to the CNT thin-film application has been developed to enhance source-drain contact with the CNT channel. Bending test data on CNT-TFT test structures show minimal change (less than 10%) in their performance. Moreover, a special multilayer metal interconnection technology is demonstrated for flexible electronics applications. Bending test data on via test structure show change in resistance by less than 5%.</description><subject>Applied sciences</subject><subject>Bend tests</subject><subject>Carbon nanotube (CNT)</subject><subject>Carbon nanotubes</subject><subject>Channels</subject><subject>Contact</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>dip-coat technique</subject><subject>Droplets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>flexible electronics</subject><subject>Ink</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>Interconnection</subject><subject>Logic gates</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Multilayers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silver</subject><subject>single-walled carbon nanotube (SWCNT)</subject><subject>Substrates</subject><subject>Testing, measurement, noise and reliability</subject><subject>Thin films</subject><subject>thin-film transistor (TFT)</subject><subject>Transistors</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFuEzEQhlcIJErhBeBiISFx2eBZ22vvMQoEKrXpIUFwW3m9s9SVYxfbi-hL8Mw4TdRDTzOj-ebXzPxV9RboAoB2n3ab5eZ60VCARQOMCiaeVWfQcagpVeJ5yQVra2jEz5fVq5RuKQXZCnVW_duim-qls788jmSl4xA82Wgf8jwg2d1YX6-t25Nd1D7ZlENMpBBrh3_t4JBs5yHlqDMm8sPmG7IJf9CRbZijwfpz1NaTVfBZm0y0H8nV7LJ1-h4jucKsHbnwGaMJ3qPJNvjX1YtJu4RvTvG8-r7-slt9qy-vv16slpe1YULmWurOiIkNrRkbMKAMTE3TARsbzYFyVAPl1KgWRKelVKXseIcjtnKSlMmJnVcfj7p3MfyeMeV-b5NB57THMKceKFClhOJQ0PdP0NtynS_b9R1wKdpW8AI1R8jEkFLEqb-Ldq_jfVHqDw71Dw71B4f6k0Nl6MNJWSej3VRebGx6nGwElwU8iL87chYRH9tCMsW4Yv8B4tGasQ</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Pham, D. T.</creator><creator>Subbaraman, H.</creator><creator>Chen, M. Y.</creator><creator>Xiaochuan Xu</creator><creator>Chen, R. T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201201</creationdate><title>Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection</title><author>Pham, D. T. ; Subbaraman, H. ; Chen, M. Y. ; Xiaochuan Xu ; Chen, R. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7a9c5f3b6cd21c18c1f22913d2a4104e8b040c86159a7788b0949ede67f7037f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bend tests</topic><topic>Carbon nanotube (CNT)</topic><topic>Carbon nanotubes</topic><topic>Channels</topic><topic>Contact</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>dip-coat technique</topic><topic>Droplets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>flexible electronics</topic><topic>Ink</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>Interconnection</topic><topic>Logic gates</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Multilayers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silver</topic><topic>single-walled carbon nanotube (SWCNT)</topic><topic>Substrates</topic><topic>Testing, measurement, noise and reliability</topic><topic>Thin films</topic><topic>thin-film transistor (TFT)</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, D. T.</creatorcontrib><creatorcontrib>Subbaraman, H.</creatorcontrib><creatorcontrib>Chen, M. Y.</creatorcontrib><creatorcontrib>Xiaochuan Xu</creatorcontrib><creatorcontrib>Chen, R. T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pham, D. T.</au><au>Subbaraman, H.</au><au>Chen, M. Y.</au><au>Xiaochuan Xu</au><au>Chen, R. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2012-01</date><risdate>2012</risdate><volume>11</volume><issue>1</issue><spage>44</spage><epage>50</epage><pages>44-50</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>This paper presents the development and characterization of self-aligned carbon nanotube thin-film transistors (CNT-TFT) on flexible substrates. The channel consisting of dense, aligned, 99% pure semiconducting single-walled CNT is deposited using the dip-coat technique on a sacrificial substrate and then transferred on the device substrate. The source, drain, and gate structures are formed by the ink-jet printing technique. A novel source-drain contact formation using wet droplet of silver ink prior to the CNT thin-film application has been developed to enhance source-drain contact with the CNT channel. Bending test data on CNT-TFT test structures show minimal change (less than 10%) in their performance. Moreover, a special multilayer metal interconnection technology is demonstrated for flexible electronics applications. Bending test data on via test structure show change in resistance by less than 5%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2011.2130535</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2012-01, Vol.11 (1), p.44-50
issn 1536-125X
1941-0085
language eng
recordid cdi_ieee_primary_5738348
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bend tests
Carbon nanotube (CNT)
Carbon nanotubes
Channels
Contact
Design. Technologies. Operation analysis. Testing
dip-coat technique
Droplets
Electronics
Exact sciences and technology
flexible electronics
Ink
Integrated circuit interconnections
Integrated circuits
Interconnection
Logic gates
Molecular electronics, nanoelectronics
Multilayers
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silver
single-walled carbon nanotube (SWCNT)
Substrates
Testing, measurement, noise and reliability
Thin films
thin-film transistor (TFT)
Transistors
title Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Aligned%20Carbon%20Nanotube%20Thin-Film%20Transistors%20on%20Flexible%20Substrates%20With%20Novel%20Source-Drain%20Contact%20and%20Multilayer%20Metal%20Interconnection&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Pham,%20D.%20T.&rft.date=2012-01&rft.volume=11&rft.issue=1&rft.spage=44&rft.epage=50&rft.pages=44-50&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2011.2130535&rft_dat=%3Cproquest_RIE%3E2556567331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914756654&rft_id=info:pmid/&rft_ieee_id=5738348&rfr_iscdi=true