Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection
This paper presents the development and characterization of self-aligned carbon nanotube thin-film transistors (CNT-TFT) on flexible substrates. The channel consisting of dense, aligned, 99% pure semiconducting single-walled CNT is deposited using the dip-coat technique on a sacrificial substrate an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2012-01, Vol.11 (1), p.44-50 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | IEEE transactions on nanotechnology |
container_volume | 11 |
creator | Pham, D. T. Subbaraman, H. Chen, M. Y. Xiaochuan Xu Chen, R. T. |
description | This paper presents the development and characterization of self-aligned carbon nanotube thin-film transistors (CNT-TFT) on flexible substrates. The channel consisting of dense, aligned, 99% pure semiconducting single-walled CNT is deposited using the dip-coat technique on a sacrificial substrate and then transferred on the device substrate. The source, drain, and gate structures are formed by the ink-jet printing technique. A novel source-drain contact formation using wet droplet of silver ink prior to the CNT thin-film application has been developed to enhance source-drain contact with the CNT channel. Bending test data on CNT-TFT test structures show minimal change (less than 10%) in their performance. Moreover, a special multilayer metal interconnection technology is demonstrated for flexible electronics applications. Bending test data on via test structure show change in resistance by less than 5%. |
doi_str_mv | 10.1109/TNANO.2011.2130535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5738348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5738348</ieee_id><sourcerecordid>2556567331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7a9c5f3b6cd21c18c1f22913d2a4104e8b040c86159a7788b0949ede67f7037f3</originalsourceid><addsrcrecordid>eNpdkcFuEzEQhlcIJErhBeBiISFx2eBZ22vvMQoEKrXpIUFwW3m9s9SVYxfbi-hL8Mw4TdRDTzOj-ebXzPxV9RboAoB2n3ab5eZ60VCARQOMCiaeVWfQcagpVeJ5yQVra2jEz5fVq5RuKQXZCnVW_duim-qls788jmSl4xA82Wgf8jwg2d1YX6-t25Nd1D7ZlENMpBBrh3_t4JBs5yHlqDMm8sPmG7IJf9CRbZijwfpz1NaTVfBZm0y0H8nV7LJ1-h4jucKsHbnwGaMJ3qPJNvjX1YtJu4RvTvG8-r7-slt9qy-vv16slpe1YULmWurOiIkNrRkbMKAMTE3TARsbzYFyVAPl1KgWRKelVKXseIcjtnKSlMmJnVcfj7p3MfyeMeV-b5NB57THMKceKFClhOJQ0PdP0NtynS_b9R1wKdpW8AI1R8jEkFLEqb-Ldq_jfVHqDw71Dw71B4f6k0Nl6MNJWSej3VRebGx6nGwElwU8iL87chYRH9tCMsW4Yv8B4tGasQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914756654</pqid></control><display><type>article</type><title>Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection</title><source>IEEE Electronic Library (IEL)</source><creator>Pham, D. T. ; Subbaraman, H. ; Chen, M. Y. ; Xiaochuan Xu ; Chen, R. T.</creator><creatorcontrib>Pham, D. T. ; Subbaraman, H. ; Chen, M. Y. ; Xiaochuan Xu ; Chen, R. T.</creatorcontrib><description>This paper presents the development and characterization of self-aligned carbon nanotube thin-film transistors (CNT-TFT) on flexible substrates. The channel consisting of dense, aligned, 99% pure semiconducting single-walled CNT is deposited using the dip-coat technique on a sacrificial substrate and then transferred on the device substrate. The source, drain, and gate structures are formed by the ink-jet printing technique. A novel source-drain contact formation using wet droplet of silver ink prior to the CNT thin-film application has been developed to enhance source-drain contact with the CNT channel. Bending test data on CNT-TFT test structures show minimal change (less than 10%) in their performance. Moreover, a special multilayer metal interconnection technology is demonstrated for flexible electronics applications. Bending test data on via test structure show change in resistance by less than 5%.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2011.2130535</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bend tests ; Carbon nanotube (CNT) ; Carbon nanotubes ; Channels ; Contact ; Design. Technologies. Operation analysis. Testing ; dip-coat technique ; Droplets ; Electronics ; Exact sciences and technology ; flexible electronics ; Ink ; Integrated circuit interconnections ; Integrated circuits ; Interconnection ; Logic gates ; Molecular electronics, nanoelectronics ; Multilayers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silver ; single-walled carbon nanotube (SWCNT) ; Substrates ; Testing, measurement, noise and reliability ; Thin films ; thin-film transistor (TFT) ; Transistors</subject><ispartof>IEEE transactions on nanotechnology, 2012-01, Vol.11 (1), p.44-50</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7a9c5f3b6cd21c18c1f22913d2a4104e8b040c86159a7788b0949ede67f7037f3</citedby><cites>FETCH-LOGICAL-c357t-7a9c5f3b6cd21c18c1f22913d2a4104e8b040c86159a7788b0949ede67f7037f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5738348$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5738348$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25473054$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, D. T.</creatorcontrib><creatorcontrib>Subbaraman, H.</creatorcontrib><creatorcontrib>Chen, M. Y.</creatorcontrib><creatorcontrib>Xiaochuan Xu</creatorcontrib><creatorcontrib>Chen, R. T.</creatorcontrib><title>Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>This paper presents the development and characterization of self-aligned carbon nanotube thin-film transistors (CNT-TFT) on flexible substrates. The channel consisting of dense, aligned, 99% pure semiconducting single-walled CNT is deposited using the dip-coat technique on a sacrificial substrate and then transferred on the device substrate. The source, drain, and gate structures are formed by the ink-jet printing technique. A novel source-drain contact formation using wet droplet of silver ink prior to the CNT thin-film application has been developed to enhance source-drain contact with the CNT channel. Bending test data on CNT-TFT test structures show minimal change (less than 10%) in their performance. Moreover, a special multilayer metal interconnection technology is demonstrated for flexible electronics applications. Bending test data on via test structure show change in resistance by less than 5%.</description><subject>Applied sciences</subject><subject>Bend tests</subject><subject>Carbon nanotube (CNT)</subject><subject>Carbon nanotubes</subject><subject>Channels</subject><subject>Contact</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>dip-coat technique</subject><subject>Droplets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>flexible electronics</subject><subject>Ink</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>Interconnection</subject><subject>Logic gates</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Multilayers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silver</subject><subject>single-walled carbon nanotube (SWCNT)</subject><subject>Substrates</subject><subject>Testing, measurement, noise and reliability</subject><subject>Thin films</subject><subject>thin-film transistor (TFT)</subject><subject>Transistors</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFuEzEQhlcIJErhBeBiISFx2eBZ22vvMQoEKrXpIUFwW3m9s9SVYxfbi-hL8Mw4TdRDTzOj-ebXzPxV9RboAoB2n3ab5eZ60VCARQOMCiaeVWfQcagpVeJ5yQVra2jEz5fVq5RuKQXZCnVW_duim-qls788jmSl4xA82Wgf8jwg2d1YX6-t25Nd1D7ZlENMpBBrh3_t4JBs5yHlqDMm8sPmG7IJf9CRbZijwfpz1NaTVfBZm0y0H8nV7LJ1-h4jucKsHbnwGaMJ3qPJNvjX1YtJu4RvTvG8-r7-slt9qy-vv16slpe1YULmWurOiIkNrRkbMKAMTE3TARsbzYFyVAPl1KgWRKelVKXseIcjtnKSlMmJnVcfj7p3MfyeMeV-b5NB57THMKceKFClhOJQ0PdP0NtynS_b9R1wKdpW8AI1R8jEkFLEqb-Ldq_jfVHqDw71Dw71B4f6k0Nl6MNJWSej3VRebGx6nGwElwU8iL87chYRH9tCMsW4Yv8B4tGasQ</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Pham, D. T.</creator><creator>Subbaraman, H.</creator><creator>Chen, M. Y.</creator><creator>Xiaochuan Xu</creator><creator>Chen, R. T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201201</creationdate><title>Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection</title><author>Pham, D. T. ; Subbaraman, H. ; Chen, M. Y. ; Xiaochuan Xu ; Chen, R. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7a9c5f3b6cd21c18c1f22913d2a4104e8b040c86159a7788b0949ede67f7037f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bend tests</topic><topic>Carbon nanotube (CNT)</topic><topic>Carbon nanotubes</topic><topic>Channels</topic><topic>Contact</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>dip-coat technique</topic><topic>Droplets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>flexible electronics</topic><topic>Ink</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>Interconnection</topic><topic>Logic gates</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Multilayers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silver</topic><topic>single-walled carbon nanotube (SWCNT)</topic><topic>Substrates</topic><topic>Testing, measurement, noise and reliability</topic><topic>Thin films</topic><topic>thin-film transistor (TFT)</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, D. T.</creatorcontrib><creatorcontrib>Subbaraman, H.</creatorcontrib><creatorcontrib>Chen, M. Y.</creatorcontrib><creatorcontrib>Xiaochuan Xu</creatorcontrib><creatorcontrib>Chen, R. T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pham, D. T.</au><au>Subbaraman, H.</au><au>Chen, M. Y.</au><au>Xiaochuan Xu</au><au>Chen, R. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2012-01</date><risdate>2012</risdate><volume>11</volume><issue>1</issue><spage>44</spage><epage>50</epage><pages>44-50</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>This paper presents the development and characterization of self-aligned carbon nanotube thin-film transistors (CNT-TFT) on flexible substrates. The channel consisting of dense, aligned, 99% pure semiconducting single-walled CNT is deposited using the dip-coat technique on a sacrificial substrate and then transferred on the device substrate. The source, drain, and gate structures are formed by the ink-jet printing technique. A novel source-drain contact formation using wet droplet of silver ink prior to the CNT thin-film application has been developed to enhance source-drain contact with the CNT channel. Bending test data on CNT-TFT test structures show minimal change (less than 10%) in their performance. Moreover, a special multilayer metal interconnection technology is demonstrated for flexible electronics applications. Bending test data on via test structure show change in resistance by less than 5%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2011.2130535</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2012-01, Vol.11 (1), p.44-50 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_ieee_primary_5738348 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Bend tests Carbon nanotube (CNT) Carbon nanotubes Channels Contact Design. Technologies. Operation analysis. Testing dip-coat technique Droplets Electronics Exact sciences and technology flexible electronics Ink Integrated circuit interconnections Integrated circuits Interconnection Logic gates Molecular electronics, nanoelectronics Multilayers Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silver single-walled carbon nanotube (SWCNT) Substrates Testing, measurement, noise and reliability Thin films thin-film transistor (TFT) Transistors |
title | Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source-Drain Contact and Multilayer Metal Interconnection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Aligned%20Carbon%20Nanotube%20Thin-Film%20Transistors%20on%20Flexible%20Substrates%20With%20Novel%20Source-Drain%20Contact%20and%20Multilayer%20Metal%20Interconnection&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Pham,%20D.%20T.&rft.date=2012-01&rft.volume=11&rft.issue=1&rft.spage=44&rft.epage=50&rft.pages=44-50&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2011.2130535&rft_dat=%3Cproquest_RIE%3E2556567331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914756654&rft_id=info:pmid/&rft_ieee_id=5738348&rfr_iscdi=true |