Invariant moment based feature analysis for abnormal erythrocyte recognition

Erythrocyte shape recognition is very important in the detection of thalassemia and anemia using microscopic images. This study aims to develop a computer aided shape recognizer for the recognition of abnormal shapes viz., tear drop, echinocyte, eliptocyte. Here such recognition is done using Hu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Das, D, Ghosh, M, Chakraborty, C, Pal, M, Maity, A K
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue
container_start_page 242
container_title
container_volume
creator Das, D
Ghosh, M
Chakraborty, C
Pal, M
Maity, A K
description Erythrocyte shape recognition is very important in the detection of thalassemia and anemia using microscopic images. This study aims to develop a computer aided shape recognizer for the recognition of abnormal shapes viz., tear drop, echinocyte, eliptocyte. Here such recognition is done using Hu's moments and other geometric features followed by gray level thresholding and marker controlled watershed segmentation. These features are statistically evaluated to show their significant in discriminating the mentioned abnormal and normal shapes. In the result, it is found that six moment based features are significant.
doi_str_mv 10.1109/ICSMB.2010.5735380
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5735380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5735380</ieee_id><sourcerecordid>5735380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c139t-1a65af6c82fd1ac12939136cea3876fc76a3ca886d97a107d95681a18bc2aa113</originalsourceid><addsrcrecordid>eNpVkMtKxDAYRiMiKGNfQDd5gY75G3NbavFSqLhQ18PfNNFI20gShb69A87Gb3M4m7P4CLkAtgVg5qprX55utw3bu1BccM2OSGWUBgmNvmZc8-N_btgpqXL-ZPuJRmkhzkjfLT-YAi6FznF2ewyY3Ui9w_KdHMUFpzWHTH1MFIclphkn6tJaPlK0a3E0ORvfl1BCXM7Jiccpu-rADXm7v3ttH-v--aFrb_raAjelBpQCvbS68SOghcZwA1xah1wr6a2SyC1qLUejEJgajZAaEPRgG0QAviGXf93gnNt9pTBjWneHD_gvoHhQtA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Invariant moment based feature analysis for abnormal erythrocyte recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Das, D ; Ghosh, M ; Chakraborty, C ; Pal, M ; Maity, A K</creator><creatorcontrib>Das, D ; Ghosh, M ; Chakraborty, C ; Pal, M ; Maity, A K</creatorcontrib><description>Erythrocyte shape recognition is very important in the detection of thalassemia and anemia using microscopic images. This study aims to develop a computer aided shape recognizer for the recognition of abnormal shapes viz., tear drop, echinocyte, eliptocyte. Here such recognition is done using Hu's moments and other geometric features followed by gray level thresholding and marker controlled watershed segmentation. These features are statistically evaluated to show their significant in discriminating the mentioned abnormal and normal shapes. In the result, it is found that six moment based features are significant.</description><identifier>ISBN: 9781612840390</identifier><identifier>ISBN: 1612840396</identifier><identifier>EISBN: 9781612840383</identifier><identifier>EISBN: 1612840388</identifier><identifier>EISBN: 9781612840376</identifier><identifier>EISBN: 161284037X</identifier><identifier>DOI: 10.1109/ICSMB.2010.5735380</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analysis of variance ; Artificial neural networks ; Biomedical optical imaging ; Bismuth ; Erythrocyte ; Invarian moments ; light microscopic image ; Medical diagnostic imaging ; Microscopy ; Optical imaging ; watershed segmentation</subject><ispartof>2010 International Conference on Systems in Medicine and Biology, 2010, p.242-247</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c139t-1a65af6c82fd1ac12939136cea3876fc76a3ca886d97a107d95681a18bc2aa113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5735380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5735380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Das, D</creatorcontrib><creatorcontrib>Ghosh, M</creatorcontrib><creatorcontrib>Chakraborty, C</creatorcontrib><creatorcontrib>Pal, M</creatorcontrib><creatorcontrib>Maity, A K</creatorcontrib><title>Invariant moment based feature analysis for abnormal erythrocyte recognition</title><title>2010 International Conference on Systems in Medicine and Biology</title><addtitle>ICSMB</addtitle><description>Erythrocyte shape recognition is very important in the detection of thalassemia and anemia using microscopic images. This study aims to develop a computer aided shape recognizer for the recognition of abnormal shapes viz., tear drop, echinocyte, eliptocyte. Here such recognition is done using Hu's moments and other geometric features followed by gray level thresholding and marker controlled watershed segmentation. These features are statistically evaluated to show their significant in discriminating the mentioned abnormal and normal shapes. In the result, it is found that six moment based features are significant.</description><subject>Analysis of variance</subject><subject>Artificial neural networks</subject><subject>Biomedical optical imaging</subject><subject>Bismuth</subject><subject>Erythrocyte</subject><subject>Invarian moments</subject><subject>light microscopic image</subject><subject>Medical diagnostic imaging</subject><subject>Microscopy</subject><subject>Optical imaging</subject><subject>watershed segmentation</subject><isbn>9781612840390</isbn><isbn>1612840396</isbn><isbn>9781612840383</isbn><isbn>1612840388</isbn><isbn>9781612840376</isbn><isbn>161284037X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKxDAYRiMiKGNfQDd5gY75G3NbavFSqLhQ18PfNNFI20gShb69A87Gb3M4m7P4CLkAtgVg5qprX55utw3bu1BccM2OSGWUBgmNvmZc8-N_btgpqXL-ZPuJRmkhzkjfLT-YAi6FznF2ewyY3Ui9w_KdHMUFpzWHTH1MFIclphkn6tJaPlK0a3E0ORvfl1BCXM7Jiccpu-rADXm7v3ttH-v--aFrb_raAjelBpQCvbS68SOghcZwA1xah1wr6a2SyC1qLUejEJgajZAaEPRgG0QAviGXf93gnNt9pTBjWneHD_gvoHhQtA</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Das, D</creator><creator>Ghosh, M</creator><creator>Chakraborty, C</creator><creator>Pal, M</creator><creator>Maity, A K</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Invariant moment based feature analysis for abnormal erythrocyte recognition</title><author>Das, D ; Ghosh, M ; Chakraborty, C ; Pal, M ; Maity, A K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c139t-1a65af6c82fd1ac12939136cea3876fc76a3ca886d97a107d95681a18bc2aa113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis of variance</topic><topic>Artificial neural networks</topic><topic>Biomedical optical imaging</topic><topic>Bismuth</topic><topic>Erythrocyte</topic><topic>Invarian moments</topic><topic>light microscopic image</topic><topic>Medical diagnostic imaging</topic><topic>Microscopy</topic><topic>Optical imaging</topic><topic>watershed segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Das, D</creatorcontrib><creatorcontrib>Ghosh, M</creatorcontrib><creatorcontrib>Chakraborty, C</creatorcontrib><creatorcontrib>Pal, M</creatorcontrib><creatorcontrib>Maity, A K</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Das, D</au><au>Ghosh, M</au><au>Chakraborty, C</au><au>Pal, M</au><au>Maity, A K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Invariant moment based feature analysis for abnormal erythrocyte recognition</atitle><btitle>2010 International Conference on Systems in Medicine and Biology</btitle><stitle>ICSMB</stitle><date>2010-12</date><risdate>2010</risdate><spage>242</spage><epage>247</epage><pages>242-247</pages><isbn>9781612840390</isbn><isbn>1612840396</isbn><eisbn>9781612840383</eisbn><eisbn>1612840388</eisbn><eisbn>9781612840376</eisbn><eisbn>161284037X</eisbn><abstract>Erythrocyte shape recognition is very important in the detection of thalassemia and anemia using microscopic images. This study aims to develop a computer aided shape recognizer for the recognition of abnormal shapes viz., tear drop, echinocyte, eliptocyte. Here such recognition is done using Hu's moments and other geometric features followed by gray level thresholding and marker controlled watershed segmentation. These features are statistically evaluated to show their significant in discriminating the mentioned abnormal and normal shapes. In the result, it is found that six moment based features are significant.</abstract><pub>IEEE</pub><doi>10.1109/ICSMB.2010.5735380</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612840390
ispartof 2010 International Conference on Systems in Medicine and Biology, 2010, p.242-247
issn
language eng
recordid cdi_ieee_primary_5735380
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analysis of variance
Artificial neural networks
Biomedical optical imaging
Bismuth
Erythrocyte
Invarian moments
light microscopic image
Medical diagnostic imaging
Microscopy
Optical imaging
watershed segmentation
title Invariant moment based feature analysis for abnormal erythrocyte recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Invariant%20moment%20based%20feature%20analysis%20for%20abnormal%20erythrocyte%20recognition&rft.btitle=2010%20International%20Conference%20on%20Systems%20in%20Medicine%20and%20Biology&rft.au=Das,%20D&rft.date=2010-12&rft.spage=242&rft.epage=247&rft.pages=242-247&rft.isbn=9781612840390&rft.isbn_list=1612840396&rft_id=info:doi/10.1109/ICSMB.2010.5735380&rft_dat=%3Cieee_6IE%3E5735380%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612840383&rft.eisbn_list=1612840388&rft.eisbn_list=9781612840376&rft.eisbn_list=161284037X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5735380&rfr_iscdi=true