Optimized capacity planning and performance measurement through OPNET Modeler
This paper presents a number of performance assessment studies of the capacity planning operations on existing networks using OPNET Modeler. We have combined a novel custom-made planning tool and OPNET Modeler to redesign and evaluate an existing network through various redesign techniques, which in...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | |
container_start_page | 43 |
container_title | |
container_volume | |
creator | Habib, S J Marimuthu, P N |
description | This paper presents a number of performance assessment studies of the capacity planning operations on existing networks using OPNET Modeler. We have combined a novel custom-made planning tool and OPNET Modeler to redesign and evaluate an existing network through various redesign techniques, which involve relocating the existing nodes and consolidating clusters (sub-networks). The proposed tool is intended with the conscious to reduce the extra-traffic and the operational/maintenance cost of the network, where Simulated Annealing and Genetic Algorithm are utilized to search the redesign space to find enhanced network topologies. The commercial OPNET Modeler analyzes the performance of the redesigned topology at node (client) level through link utilization. Our simulation studies show a better trade-off by increasing the overall utilization of the redesigned network around 20%, thereby reducing the network maintenance cost accordingly. |
doi_str_mv | 10.1109/ICCAIE.2010.5735044 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5735044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5735044</ieee_id><sourcerecordid>5735044</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7eddab917e42efb5202a6ea8fce322c8b005c3e4440ad7adac06031398d8c1243</originalsourceid><addsrcrecordid>eNo1kM9Og0AYxNcYE7XyBL3sC1D3H104NgSVpBUP3JuP3Y92DSxkoYf69JJY5zKZ32EyGULWnG04Z9lrmee7stgItoBEy4QpdUeiTKdcCaUylkh2T57_g0oeSTRN32xRIrRW6RM5VOPseveDlhoYwbj5SscOvHf-RMFbOmJoh9CDN0h7hOkSsEc_0_kchsvpTKuvz6Kmh8Fih-GFPLTQTRjdfEXqt6LOP-J99V7mu33sMjbHGq2FJuMalcC2SQQTsEVIW4NSCJM2yzwjUSnFwGqwYNiWSS6z1KaGCyVXZP1X6xDxOAbXQ7gebwfIX_hsUA8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimized capacity planning and performance measurement through OPNET Modeler</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Habib, S J ; Marimuthu, P N</creator><creatorcontrib>Habib, S J ; Marimuthu, P N</creatorcontrib><description>This paper presents a number of performance assessment studies of the capacity planning operations on existing networks using OPNET Modeler. We have combined a novel custom-made planning tool and OPNET Modeler to redesign and evaluate an existing network through various redesign techniques, which involve relocating the existing nodes and consolidating clusters (sub-networks). The proposed tool is intended with the conscious to reduce the extra-traffic and the operational/maintenance cost of the network, where Simulated Annealing and Genetic Algorithm are utilized to search the redesign space to find enhanced network topologies. The commercial OPNET Modeler analyzes the performance of the redesigned topology at node (client) level through link utilization. Our simulation studies show a better trade-off by increasing the overall utilization of the redesigned network around 20%, thereby reducing the network maintenance cost accordingly.</description><identifier>ISBN: 1424490545</identifier><identifier>ISBN: 9781424490547</identifier><identifier>EISBN: 9781424490530</identifier><identifier>EISBN: 1424490537</identifier><identifier>EISBN: 1424490553</identifier><identifier>EISBN: 9781424490554</identifier><identifier>DOI: 10.1109/ICCAIE.2010.5735044</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Biological cells ; Biological system modeling ; capacity planning ; Computational modeling ; Gallium ; genetic algorithm ; netwrok redesign ; OPNET Modeler ; Simulated annealing</subject><ispartof>2010 International Conference on Computer Applications and Industrial Electronics, 2010, p.43-48</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5735044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5735044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Habib, S J</creatorcontrib><creatorcontrib>Marimuthu, P N</creatorcontrib><title>Optimized capacity planning and performance measurement through OPNET Modeler</title><title>2010 International Conference on Computer Applications and Industrial Electronics</title><addtitle>ICCAIE</addtitle><description>This paper presents a number of performance assessment studies of the capacity planning operations on existing networks using OPNET Modeler. We have combined a novel custom-made planning tool and OPNET Modeler to redesign and evaluate an existing network through various redesign techniques, which involve relocating the existing nodes and consolidating clusters (sub-networks). The proposed tool is intended with the conscious to reduce the extra-traffic and the operational/maintenance cost of the network, where Simulated Annealing and Genetic Algorithm are utilized to search the redesign space to find enhanced network topologies. The commercial OPNET Modeler analyzes the performance of the redesigned topology at node (client) level through link utilization. Our simulation studies show a better trade-off by increasing the overall utilization of the redesigned network around 20%, thereby reducing the network maintenance cost accordingly.</description><subject>Analytical models</subject><subject>Biological cells</subject><subject>Biological system modeling</subject><subject>capacity planning</subject><subject>Computational modeling</subject><subject>Gallium</subject><subject>genetic algorithm</subject><subject>netwrok redesign</subject><subject>OPNET Modeler</subject><subject>Simulated annealing</subject><isbn>1424490545</isbn><isbn>9781424490547</isbn><isbn>9781424490530</isbn><isbn>1424490537</isbn><isbn>1424490553</isbn><isbn>9781424490554</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM9Og0AYxNcYE7XyBL3sC1D3H104NgSVpBUP3JuP3Y92DSxkoYf69JJY5zKZ32EyGULWnG04Z9lrmee7stgItoBEy4QpdUeiTKdcCaUylkh2T57_g0oeSTRN32xRIrRW6RM5VOPseveDlhoYwbj5SscOvHf-RMFbOmJoh9CDN0h7hOkSsEc_0_kchsvpTKuvz6Kmh8Fih-GFPLTQTRjdfEXqt6LOP-J99V7mu33sMjbHGq2FJuMalcC2SQQTsEVIW4NSCJM2yzwjUSnFwGqwYNiWSS6z1KaGCyVXZP1X6xDxOAbXQ7gebwfIX_hsUA8</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Habib, S J</creator><creator>Marimuthu, P N</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Optimized capacity planning and performance measurement through OPNET Modeler</title><author>Habib, S J ; Marimuthu, P N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7eddab917e42efb5202a6ea8fce322c8b005c3e4440ad7adac06031398d8c1243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Biological cells</topic><topic>Biological system modeling</topic><topic>capacity planning</topic><topic>Computational modeling</topic><topic>Gallium</topic><topic>genetic algorithm</topic><topic>netwrok redesign</topic><topic>OPNET Modeler</topic><topic>Simulated annealing</topic><toplevel>online_resources</toplevel><creatorcontrib>Habib, S J</creatorcontrib><creatorcontrib>Marimuthu, P N</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Habib, S J</au><au>Marimuthu, P N</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimized capacity planning and performance measurement through OPNET Modeler</atitle><btitle>2010 International Conference on Computer Applications and Industrial Electronics</btitle><stitle>ICCAIE</stitle><date>2010-12</date><risdate>2010</risdate><spage>43</spage><epage>48</epage><pages>43-48</pages><isbn>1424490545</isbn><isbn>9781424490547</isbn><eisbn>9781424490530</eisbn><eisbn>1424490537</eisbn><eisbn>1424490553</eisbn><eisbn>9781424490554</eisbn><abstract>This paper presents a number of performance assessment studies of the capacity planning operations on existing networks using OPNET Modeler. We have combined a novel custom-made planning tool and OPNET Modeler to redesign and evaluate an existing network through various redesign techniques, which involve relocating the existing nodes and consolidating clusters (sub-networks). The proposed tool is intended with the conscious to reduce the extra-traffic and the operational/maintenance cost of the network, where Simulated Annealing and Genetic Algorithm are utilized to search the redesign space to find enhanced network topologies. The commercial OPNET Modeler analyzes the performance of the redesigned topology at node (client) level through link utilization. Our simulation studies show a better trade-off by increasing the overall utilization of the redesigned network around 20%, thereby reducing the network maintenance cost accordingly.</abstract><pub>IEEE</pub><doi>10.1109/ICCAIE.2010.5735044</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424490545 |
ispartof | 2010 International Conference on Computer Applications and Industrial Electronics, 2010, p.43-48 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5735044 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Biological cells Biological system modeling capacity planning Computational modeling Gallium genetic algorithm netwrok redesign OPNET Modeler Simulated annealing |
title | Optimized capacity planning and performance measurement through OPNET Modeler |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimized%20capacity%20planning%20and%20performance%20measurement%20through%20OPNET%20Modeler&rft.btitle=2010%20International%20Conference%20on%20Computer%20Applications%20and%20Industrial%20Electronics&rft.au=Habib,%20S%20J&rft.date=2010-12&rft.spage=43&rft.epage=48&rft.pages=43-48&rft.isbn=1424490545&rft.isbn_list=9781424490547&rft_id=info:doi/10.1109/ICCAIE.2010.5735044&rft_dat=%3Cieee_6IE%3E5735044%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424490530&rft.eisbn_list=1424490537&rft.eisbn_list=1424490553&rft.eisbn_list=9781424490554&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5735044&rfr_iscdi=true |