Part scaling and mechanics of thin part self-assembly in the fludic phase
This paper presents an experimental and theoretical study of previously demonstrated high yield self-assembly processes using surface programmable template and specific surface Faraday waves. Here we focus on the combined effect of substrate tilting angle and part size. For 1×1, 3×3 and 5×5 mm 2 par...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 367 |
---|---|
container_issue | |
container_start_page | 364 |
container_title | |
container_volume | |
creator | Kwang Soon Park Xugang Xiong Baskaran, R Böhringer, K F |
description | This paper presents an experimental and theoretical study of previously demonstrated high yield self-assembly processes using surface programmable template and specific surface Faraday waves. Here we focus on the combined effect of substrate tilting angle and part size. For 1×1, 3×3 and 5×5 mm 2 parts of 100 μm thickness, the maximum substrate tilting angles for effective assembly are experimentally determined and the surface tension induced torques are calculated based on a newly developed model. |
doi_str_mv | 10.1109/MEMSYS.2011.5734437 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5734437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5734437</ieee_id><sourcerecordid>5734437</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-26594bd472c32ef4c6472337dda377bbb693aee536bfbf5812b9a160051e34593</originalsourceid><addsrcrecordid>eNo1UEtOwzAUNAIk2tITdOMLJPjvvCWqClRqBVJhwaqyk2dilIQoDovengjKaj6amcUQsuIs55zB3X6zP7wfcsE4z7WVSkl7QeZcCaXASAWXZAm2-NfCXpEZZ4XKDADckHlKn4xNZQUzsn1xw0hT6ZrYfVDXVbTFsnZdLBP9CnSsY0f73wg2IXMpYeubE53csUYamu8qlrSvXcJbch1ck3B5xgV5e9i8rp-y3fPjdn2_yyK3esyE0aB8pawopcCgSjNRKW1VOWmt996AdIhaGh980AUXHhw3jGmOUmmQC7L6242IeOyH2LrhdDzfIH8AxOJOyQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Part scaling and mechanics of thin part self-assembly in the fludic phase</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kwang Soon Park ; Xugang Xiong ; Baskaran, R ; Böhringer, K F</creator><creatorcontrib>Kwang Soon Park ; Xugang Xiong ; Baskaran, R ; Böhringer, K F</creatorcontrib><description>This paper presents an experimental and theoretical study of previously demonstrated high yield self-assembly processes using surface programmable template and specific surface Faraday waves. Here we focus on the combined effect of substrate tilting angle and part size. For 1×1, 3×3 and 5×5 mm 2 parts of 100 μm thickness, the maximum substrate tilting angles for effective assembly are experimentally determined and the surface tension induced torques are calculated based on a newly developed model.</description><identifier>ISSN: 1084-6999</identifier><identifier>ISBN: 9781424496327</identifier><identifier>ISBN: 1424496322</identifier><identifier>EISBN: 1424496349</identifier><identifier>EISBN: 9781424496341</identifier><identifier>DOI: 10.1109/MEMSYS.2011.5734437</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly ; Gold ; Self-assembly ; Substrates ; Surface tension ; Surface waves ; Torque</subject><ispartof>2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, 2011, p.364-367</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5734437$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5734437$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kwang Soon Park</creatorcontrib><creatorcontrib>Xugang Xiong</creatorcontrib><creatorcontrib>Baskaran, R</creatorcontrib><creatorcontrib>Böhringer, K F</creatorcontrib><title>Part scaling and mechanics of thin part self-assembly in the fludic phase</title><title>2011 IEEE 24th International Conference on Micro Electro Mechanical Systems</title><addtitle>MEMSYS</addtitle><description>This paper presents an experimental and theoretical study of previously demonstrated high yield self-assembly processes using surface programmable template and specific surface Faraday waves. Here we focus on the combined effect of substrate tilting angle and part size. For 1×1, 3×3 and 5×5 mm 2 parts of 100 μm thickness, the maximum substrate tilting angles for effective assembly are experimentally determined and the surface tension induced torques are calculated based on a newly developed model.</description><subject>Assembly</subject><subject>Gold</subject><subject>Self-assembly</subject><subject>Substrates</subject><subject>Surface tension</subject><subject>Surface waves</subject><subject>Torque</subject><issn>1084-6999</issn><isbn>9781424496327</isbn><isbn>1424496322</isbn><isbn>1424496349</isbn><isbn>9781424496341</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtOwzAUNAIk2tITdOMLJPjvvCWqClRqBVJhwaqyk2dilIQoDovengjKaj6amcUQsuIs55zB3X6zP7wfcsE4z7WVSkl7QeZcCaXASAWXZAm2-NfCXpEZZ4XKDADckHlKn4xNZQUzsn1xw0hT6ZrYfVDXVbTFsnZdLBP9CnSsY0f73wg2IXMpYeubE53csUYamu8qlrSvXcJbch1ck3B5xgV5e9i8rp-y3fPjdn2_yyK3esyE0aB8pawopcCgSjNRKW1VOWmt996AdIhaGh980AUXHhw3jGmOUmmQC7L6242IeOyH2LrhdDzfIH8AxOJOyQ</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Kwang Soon Park</creator><creator>Xugang Xiong</creator><creator>Baskaran, R</creator><creator>Böhringer, K F</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201101</creationdate><title>Part scaling and mechanics of thin part self-assembly in the fludic phase</title><author>Kwang Soon Park ; Xugang Xiong ; Baskaran, R ; Böhringer, K F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-26594bd472c32ef4c6472337dda377bbb693aee536bfbf5812b9a160051e34593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Assembly</topic><topic>Gold</topic><topic>Self-assembly</topic><topic>Substrates</topic><topic>Surface tension</topic><topic>Surface waves</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Kwang Soon Park</creatorcontrib><creatorcontrib>Xugang Xiong</creatorcontrib><creatorcontrib>Baskaran, R</creatorcontrib><creatorcontrib>Böhringer, K F</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwang Soon Park</au><au>Xugang Xiong</au><au>Baskaran, R</au><au>Böhringer, K F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Part scaling and mechanics of thin part self-assembly in the fludic phase</atitle><btitle>2011 IEEE 24th International Conference on Micro Electro Mechanical Systems</btitle><stitle>MEMSYS</stitle><date>2011-01</date><risdate>2011</risdate><spage>364</spage><epage>367</epage><pages>364-367</pages><issn>1084-6999</issn><isbn>9781424496327</isbn><isbn>1424496322</isbn><eisbn>1424496349</eisbn><eisbn>9781424496341</eisbn><abstract>This paper presents an experimental and theoretical study of previously demonstrated high yield self-assembly processes using surface programmable template and specific surface Faraday waves. Here we focus on the combined effect of substrate tilting angle and part size. For 1×1, 3×3 and 5×5 mm 2 parts of 100 μm thickness, the maximum substrate tilting angles for effective assembly are experimentally determined and the surface tension induced torques are calculated based on a newly developed model.</abstract><pub>IEEE</pub><doi>10.1109/MEMSYS.2011.5734437</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1084-6999 |
ispartof | 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, 2011, p.364-367 |
issn | 1084-6999 |
language | eng |
recordid | cdi_ieee_primary_5734437 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Assembly Gold Self-assembly Substrates Surface tension Surface waves Torque |
title | Part scaling and mechanics of thin part self-assembly in the fludic phase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Part%20scaling%20and%20mechanics%20of%20thin%20part%20self-assembly%20in%20the%20fludic%20phase&rft.btitle=2011%20IEEE%2024th%20International%20Conference%20on%20Micro%20Electro%20Mechanical%20Systems&rft.au=Kwang%20Soon%20Park&rft.date=2011-01&rft.spage=364&rft.epage=367&rft.pages=364-367&rft.issn=1084-6999&rft.isbn=9781424496327&rft.isbn_list=1424496322&rft_id=info:doi/10.1109/MEMSYS.2011.5734437&rft_dat=%3Cieee_6IE%3E5734437%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424496349&rft.eisbn_list=9781424496341&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5734437&rfr_iscdi=true |