GA-Neural Approach for Latent Finger Print Matching

Latent finger print matching is one of the freshest areas in science. The current methods of latent finger print matching are manual and reliable on human experience. Unfortunately, a system, which can perform the latent fingerprint matching automatically, does not exist. The eye tracking technology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shapoori, Shahrzad, Allinson, Nigel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue
container_start_page 49
container_title
container_volume
creator Shapoori, Shahrzad
Allinson, Nigel
description Latent finger print matching is one of the freshest areas in science. The current methods of latent finger print matching are manual and reliable on human experience. Unfortunately, a system, which can perform the latent fingerprint matching automatically, does not exist. The eye tracking technology is able to record the eye movement and could provide useful information about the user search strategy. In this paper, the experimental data obtained from an eye tracker is analyzed by clustering analysis and a neural network based system is designed to learn the search strategy of the experts. The results show that the system is able to predict the optimum search strategy based on expert's experiences.
doi_str_mv 10.1109/ISMS.2011.19
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5730319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5730319</ieee_id><sourcerecordid>5730319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1c6264a7709f019520df2c0368d14dccbc0b87a1ea7588f63d4e581320ab88223</originalsourceid><addsrcrecordid>eNo9TE1PwkAU3KgkAnLz5mX_QOt7b7f7cWyIIEkBE7iT7XYrNQjNth7895ZonMNM5iPD2CNCigj2ebVb71ICxBTtDRsTKpWA0nDLJihJSmvAwt1_oWjEJte5vRLes1nXfcCAjLSRcszEMk824Su6E8_bNl6cP_L6Ennh-nDu-aI5v4fI32IzmLXr_XEIHtiodqcuzP50yvaLl_38NSm2y9U8L5LGQp-gV6Sk0xpsDWgzgqomD0KZCmXlfemhNNphcDozplaikiEzKAhcaQyRmLKn39smhHBoY_Pp4vch0wIEWvEDi-BFrA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GA-Neural Approach for Latent Finger Print Matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shapoori, Shahrzad ; Allinson, Nigel</creator><creatorcontrib>Shapoori, Shahrzad ; Allinson, Nigel</creatorcontrib><description>Latent finger print matching is one of the freshest areas in science. The current methods of latent finger print matching are manual and reliable on human experience. Unfortunately, a system, which can perform the latent fingerprint matching automatically, does not exist. The eye tracking technology is able to record the eye movement and could provide useful information about the user search strategy. In this paper, the experimental data obtained from an eye tracker is analyzed by clustering analysis and a neural network based system is designed to learn the search strategy of the experts. The results show that the system is able to predict the optimum search strategy based on expert's experiences.</description><identifier>ISSN: 2166-0662</identifier><identifier>ISBN: 1424498090</identifier><identifier>ISBN: 9781424498093</identifier><identifier>EISSN: 2166-0670</identifier><identifier>DOI: 10.1109/ISMS.2011.19</identifier><identifier>LCCN: 2011920111</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Clustering algorithms ; eye tracker ; finger print identification ; Fingerprint recognition ; Fingers ; Gallium ; genetic algorithm ; Humans ; latent finger print ; neural network ; Tracking</subject><ispartof>2011 Second International Conference on Intelligent Systems, Modelling and Simulation, 2011, p.49-52</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5730319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5730319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shapoori, Shahrzad</creatorcontrib><creatorcontrib>Allinson, Nigel</creatorcontrib><title>GA-Neural Approach for Latent Finger Print Matching</title><title>2011 Second International Conference on Intelligent Systems, Modelling and Simulation</title><addtitle>isms</addtitle><description>Latent finger print matching is one of the freshest areas in science. The current methods of latent finger print matching are manual and reliable on human experience. Unfortunately, a system, which can perform the latent fingerprint matching automatically, does not exist. The eye tracking technology is able to record the eye movement and could provide useful information about the user search strategy. In this paper, the experimental data obtained from an eye tracker is analyzed by clustering analysis and a neural network based system is designed to learn the search strategy of the experts. The results show that the system is able to predict the optimum search strategy based on expert's experiences.</description><subject>Artificial neural networks</subject><subject>Clustering algorithms</subject><subject>eye tracker</subject><subject>finger print identification</subject><subject>Fingerprint recognition</subject><subject>Fingers</subject><subject>Gallium</subject><subject>genetic algorithm</subject><subject>Humans</subject><subject>latent finger print</subject><subject>neural network</subject><subject>Tracking</subject><issn>2166-0662</issn><issn>2166-0670</issn><isbn>1424498090</isbn><isbn>9781424498093</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9TE1PwkAU3KgkAnLz5mX_QOt7b7f7cWyIIEkBE7iT7XYrNQjNth7895ZonMNM5iPD2CNCigj2ebVb71ICxBTtDRsTKpWA0nDLJihJSmvAwt1_oWjEJte5vRLes1nXfcCAjLSRcszEMk824Su6E8_bNl6cP_L6Ennh-nDu-aI5v4fI32IzmLXr_XEIHtiodqcuzP50yvaLl_38NSm2y9U8L5LGQp-gV6Sk0xpsDWgzgqomD0KZCmXlfemhNNphcDozplaikiEzKAhcaQyRmLKn39smhHBoY_Pp4vch0wIEWvEDi-BFrA</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Shapoori, Shahrzad</creator><creator>Allinson, Nigel</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201101</creationdate><title>GA-Neural Approach for Latent Finger Print Matching</title><author>Shapoori, Shahrzad ; Allinson, Nigel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1c6264a7709f019520df2c0368d14dccbc0b87a1ea7588f63d4e581320ab88223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Clustering algorithms</topic><topic>eye tracker</topic><topic>finger print identification</topic><topic>Fingerprint recognition</topic><topic>Fingers</topic><topic>Gallium</topic><topic>genetic algorithm</topic><topic>Humans</topic><topic>latent finger print</topic><topic>neural network</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Shapoori, Shahrzad</creatorcontrib><creatorcontrib>Allinson, Nigel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shapoori, Shahrzad</au><au>Allinson, Nigel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GA-Neural Approach for Latent Finger Print Matching</atitle><btitle>2011 Second International Conference on Intelligent Systems, Modelling and Simulation</btitle><stitle>isms</stitle><date>2011-01</date><risdate>2011</risdate><spage>49</spage><epage>52</epage><pages>49-52</pages><issn>2166-0662</issn><eissn>2166-0670</eissn><isbn>1424498090</isbn><isbn>9781424498093</isbn><abstract>Latent finger print matching is one of the freshest areas in science. The current methods of latent finger print matching are manual and reliable on human experience. Unfortunately, a system, which can perform the latent fingerprint matching automatically, does not exist. The eye tracking technology is able to record the eye movement and could provide useful information about the user search strategy. In this paper, the experimental data obtained from an eye tracker is analyzed by clustering analysis and a neural network based system is designed to learn the search strategy of the experts. The results show that the system is able to predict the optimum search strategy based on expert's experiences.</abstract><pub>IEEE</pub><doi>10.1109/ISMS.2011.19</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2166-0662
ispartof 2011 Second International Conference on Intelligent Systems, Modelling and Simulation, 2011, p.49-52
issn 2166-0662
2166-0670
language eng
recordid cdi_ieee_primary_5730319
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Clustering algorithms
eye tracker
finger print identification
Fingerprint recognition
Fingers
Gallium
genetic algorithm
Humans
latent finger print
neural network
Tracking
title GA-Neural Approach for Latent Finger Print Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GA-Neural%20Approach%20for%20Latent%20Finger%20Print%20Matching&rft.btitle=2011%20Second%20International%20Conference%20on%20Intelligent%20Systems,%20Modelling%20and%20Simulation&rft.au=Shapoori,%20Shahrzad&rft.date=2011-01&rft.spage=49&rft.epage=52&rft.pages=49-52&rft.issn=2166-0662&rft.eissn=2166-0670&rft.isbn=1424498090&rft.isbn_list=9781424498093&rft_id=info:doi/10.1109/ISMS.2011.19&rft_dat=%3Cieee_6IE%3E5730319%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5730319&rfr_iscdi=true