Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron

An important part of any hardware implementation of artificial neural networks (ANNs) is realization of the activation function which serves as the output stage of each layer. In this work, a new NMOS/PMOS design is proposed for realizing the sigmoid function as the activation function. Transistors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2012-04, Vol.20 (4), p.750-754
Hauptverfasser: Khodabandehloo, G., Mirhassani, M., Ahmadi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 4
container_start_page 750
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 20
creator Khodabandehloo, G.
Mirhassani, M.
Ahmadi, M.
description An important part of any hardware implementation of artificial neural networks (ANNs) is realization of the activation function which serves as the output stage of each layer. In this work, a new NMOS/PMOS design is proposed for realizing the sigmoid function as the activation function. Transistors in the proposed neuron are biased using only one biasing voltage. By operating in both triode and saturation regions, the proposed neuron can provide an accurate approximation of the sigmoid function. The neuron circuit is designed and laid out in 90-nm CMOS technology. The proposed neuron can be potentially used in implementation of both analog and hybrid ANNs.
doi_str_mv 10.1109/TVLSI.2011.2109404
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5719144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5719144</ieee_id><sourcerecordid>2613901441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-67031a1a06c001ce25bb66487ab8868ea5b66ddb7f63d107292f41374fd0b6003</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOKd_QG-KIHjTmTRN0twpw4_BmOCmtyVtT0dG2sykHezfm32wC3OTHM57nkMehG4JHhGC5dPiZzqfjBJMyCgJdYrTMzQgjIlYhnMe3pjTOAu9S3Tl_QpjkqYSD9DzS6uMXUaTZm2ggbZTnbZtZOtIRTO7ARN9gde-0xuIF9s1RHO9bKyulIlm0DvbXqOLWhkPN8d7iL7fXhfjj3j6-T4Zv0zjkjLRxVxgShRRmJdhdwkJKwrO00yoIst4BoqFsqoKUXNaESwSmdQpoSKtK1xwjOkQPR64a2d_e_Bd3mhfgjGqBdv7nGAiOaNM0hC9_xdd2d6Ff_pcJpJQTve85BAqnfXeQZ2vnW6U2wZSvnOa753mO6f50WkYejiSlS-VqZ1qS-1PkwkTLMB5yN0dchoATm0miAza6R9_NH2V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>929136300</pqid></control><display><type>article</type><title>Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron</title><source>IEEE Electronic Library (IEL)</source><creator>Khodabandehloo, G. ; Mirhassani, M. ; Ahmadi, M.</creator><creatorcontrib>Khodabandehloo, G. ; Mirhassani, M. ; Ahmadi, M.</creatorcontrib><description>An important part of any hardware implementation of artificial neural networks (ANNs) is realization of the activation function which serves as the output stage of each layer. In this work, a new NMOS/PMOS design is proposed for realizing the sigmoid function as the activation function. Transistors in the proposed neuron are biased using only one biasing voltage. By operating in both triode and saturation regions, the proposed neuron can provide an accurate approximation of the sigmoid function. The neuron circuit is designed and laid out in 90-nm CMOS technology. The proposed neuron can be potentially used in implementation of both analog and hybrid ANNs.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2011.2109404</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Activation ; Activation function ; analog neuron ; Applied sciences ; Approximation ; Approximation methods ; Artificial neural networks ; CMOS ; Design. Technologies. Operation analysis. Testing ; Electric, optical and optoelectronic circuits ; Electronic tubes, masers ; Electronics ; Equations ; Exact sciences and technology ; Hardware ; Integrated circuits ; Mathematical model ; Neural networks ; Neurons ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; sigmoid function ; sigmoidal neuron ; Transistors ; Triodes ; Very large scale integration ; Voltage</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2012-04, Vol.20 (4), p.750-754</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-67031a1a06c001ce25bb66487ab8868ea5b66ddb7f63d107292f41374fd0b6003</citedby><cites>FETCH-LOGICAL-c357t-67031a1a06c001ce25bb66487ab8868ea5b66ddb7f63d107292f41374fd0b6003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5719144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5719144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25756306$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khodabandehloo, G.</creatorcontrib><creatorcontrib>Mirhassani, M.</creatorcontrib><creatorcontrib>Ahmadi, M.</creatorcontrib><title>Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>An important part of any hardware implementation of artificial neural networks (ANNs) is realization of the activation function which serves as the output stage of each layer. In this work, a new NMOS/PMOS design is proposed for realizing the sigmoid function as the activation function. Transistors in the proposed neuron are biased using only one biasing voltage. By operating in both triode and saturation regions, the proposed neuron can provide an accurate approximation of the sigmoid function. The neuron circuit is designed and laid out in 90-nm CMOS technology. The proposed neuron can be potentially used in implementation of both analog and hybrid ANNs.</description><subject>Activation</subject><subject>Activation function</subject><subject>analog neuron</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Artificial neural networks</subject><subject>CMOS</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Hardware</subject><subject>Integrated circuits</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>sigmoid function</subject><subject>sigmoidal neuron</subject><subject>Transistors</subject><subject>Triodes</subject><subject>Very large scale integration</subject><subject>Voltage</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMoOKd_QG-KIHjTmTRN0twpw4_BmOCmtyVtT0dG2sykHezfm32wC3OTHM57nkMehG4JHhGC5dPiZzqfjBJMyCgJdYrTMzQgjIlYhnMe3pjTOAu9S3Tl_QpjkqYSD9DzS6uMXUaTZm2ggbZTnbZtZOtIRTO7ARN9gde-0xuIF9s1RHO9bKyulIlm0DvbXqOLWhkPN8d7iL7fXhfjj3j6-T4Zv0zjkjLRxVxgShRRmJdhdwkJKwrO00yoIst4BoqFsqoKUXNaESwSmdQpoSKtK1xwjOkQPR64a2d_e_Bd3mhfgjGqBdv7nGAiOaNM0hC9_xdd2d6Ff_pcJpJQTve85BAqnfXeQZ2vnW6U2wZSvnOa753mO6f50WkYejiSlS-VqZ1qS-1PkwkTLMB5yN0dchoATm0miAza6R9_NH2V</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Khodabandehloo, G.</creator><creator>Mirhassani, M.</creator><creator>Ahmadi, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120401</creationdate><title>Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron</title><author>Khodabandehloo, G. ; Mirhassani, M. ; Ahmadi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-67031a1a06c001ce25bb66487ab8868ea5b66ddb7f63d107292f41374fd0b6003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation</topic><topic>Activation function</topic><topic>analog neuron</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Artificial neural networks</topic><topic>CMOS</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Hardware</topic><topic>Integrated circuits</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>sigmoid function</topic><topic>sigmoidal neuron</topic><topic>Transistors</topic><topic>Triodes</topic><topic>Very large scale integration</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodabandehloo, G.</creatorcontrib><creatorcontrib>Mirhassani, M.</creatorcontrib><creatorcontrib>Ahmadi, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khodabandehloo, G.</au><au>Mirhassani, M.</au><au>Ahmadi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>20</volume><issue>4</issue><spage>750</spage><epage>754</epage><pages>750-754</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>An important part of any hardware implementation of artificial neural networks (ANNs) is realization of the activation function which serves as the output stage of each layer. In this work, a new NMOS/PMOS design is proposed for realizing the sigmoid function as the activation function. Transistors in the proposed neuron are biased using only one biasing voltage. By operating in both triode and saturation regions, the proposed neuron can provide an accurate approximation of the sigmoid function. The neuron circuit is designed and laid out in 90-nm CMOS technology. The proposed neuron can be potentially used in implementation of both analog and hybrid ANNs.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2011.2109404</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2012-04, Vol.20 (4), p.750-754
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_5719144
source IEEE Electronic Library (IEL)
subjects Activation
Activation function
analog neuron
Applied sciences
Approximation
Approximation methods
Artificial neural networks
CMOS
Design. Technologies. Operation analysis. Testing
Electric, optical and optoelectronic circuits
Electronic tubes, masers
Electronics
Equations
Exact sciences and technology
Hardware
Integrated circuits
Mathematical model
Neural networks
Neurons
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
sigmoid function
sigmoidal neuron
Transistors
Triodes
Very large scale integration
Voltage
title Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analog%20Implementation%20of%20a%20Novel%20Resistive-Type%20Sigmoidal%20Neuron&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Khodabandehloo,%20G.&rft.date=2012-04-01&rft.volume=20&rft.issue=4&rft.spage=750&rft.epage=754&rft.pages=750-754&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2011.2109404&rft_dat=%3Cproquest_RIE%3E2613901441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=929136300&rft_id=info:pmid/&rft_ieee_id=5719144&rfr_iscdi=true