A Novel Correlation Networks Approach for the Identification of Gene Targets
Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining co-expression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Dempsey, K Bonasera, S Bastola, D Ali, H |
description | Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining co-expression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as the existence of "hub" nodes and semi-cliques that potentially correspond to critical cellular structures. Difficulty lies in filtering coincidental relationships from causative structures in these large, noise-heavy networks. As such, computational expenses and algorithm availability limit accurate comparison, making it difficult to identify changes between networks. In this vein, we present our work identifying temporal relationships from microarray data obtained from mice in three stages of life. We examine the characteristics of mouse networks, including correlation and node degree distributions. Further, we identify high degree nodes ("hubs") within networks and define their essentiality. Finally, we associate Gene Ontology annotations to network structures to deduce relationships between structure and cellular functions. |
doi_str_mv | 10.1109/HICSS.2011.20 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5718537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5718537</ieee_id><sourcerecordid>5718537</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-72dec49157c3154769ea0dbbb75c42a9c1ac27bee37806f0d5f061d488cae5893</originalsourceid><addsrcrecordid>eNotjL1OwzAYRS1-JELpyMTiF0jx5_h3jCJoI0VlaPbKcb7QQIgjJwLx9lQqdzhnObqEPALbADD7vCuLw2HDGcAZVyThUvNUGcWvyT0ILoRVYPQNSUBmLAXF5B1Zz_MHO09ybbhKSJXTffjGgRYhRhzc0oeR7nH5CfFzpvk0xeD8iXYh0uWEtGxxXPqu95cwdHSLI9LaxXdc5gdy27lhxvW_V6R-famLXVq9bcsir9LesiXVvEUvLEjtM5BCK4uOtU3TaOkFd9aD81w3iJk2THWslR1T0ApjvENpbLYiT5fbHhGPU-y_XPw9Sg1GZjr7A63XToQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Correlation Networks Approach for the Identification of Gene Targets</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dempsey, K ; Bonasera, S ; Bastola, D ; Ali, H</creator><creatorcontrib>Dempsey, K ; Bonasera, S ; Bastola, D ; Ali, H</creatorcontrib><description>Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining co-expression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as the existence of "hub" nodes and semi-cliques that potentially correspond to critical cellular structures. Difficulty lies in filtering coincidental relationships from causative structures in these large, noise-heavy networks. As such, computational expenses and algorithm availability limit accurate comparison, making it difficult to identify changes between networks. In this vein, we present our work identifying temporal relationships from microarray data obtained from mice in three stages of life. We examine the characteristics of mouse networks, including correlation and node degree distributions. Further, we identify high degree nodes ("hubs") within networks and define their essentiality. Finally, we associate Gene Ontology annotations to network structures to deduce relationships between structure and cellular functions.</description><identifier>ISSN: 1530-1605</identifier><identifier>ISBN: 1424496187</identifier><identifier>ISBN: 9781424496181</identifier><identifier>EISSN: 2572-6862</identifier><identifier>DOI: 10.1109/HICSS.2011.20</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aging ; Correlation ; Filtering theory ; Gene expression ; Mice</subject><ispartof>2011 44th Hawaii International Conference on System Sciences, 2011, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5718537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5718537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dempsey, K</creatorcontrib><creatorcontrib>Bonasera, S</creatorcontrib><creatorcontrib>Bastola, D</creatorcontrib><creatorcontrib>Ali, H</creatorcontrib><title>A Novel Correlation Networks Approach for the Identification of Gene Targets</title><title>2011 44th Hawaii International Conference on System Sciences</title><addtitle>hicss</addtitle><description>Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining co-expression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as the existence of "hub" nodes and semi-cliques that potentially correspond to critical cellular structures. Difficulty lies in filtering coincidental relationships from causative structures in these large, noise-heavy networks. As such, computational expenses and algorithm availability limit accurate comparison, making it difficult to identify changes between networks. In this vein, we present our work identifying temporal relationships from microarray data obtained from mice in three stages of life. We examine the characteristics of mouse networks, including correlation and node degree distributions. Further, we identify high degree nodes ("hubs") within networks and define their essentiality. Finally, we associate Gene Ontology annotations to network structures to deduce relationships between structure and cellular functions.</description><subject>Aging</subject><subject>Correlation</subject><subject>Filtering theory</subject><subject>Gene expression</subject><subject>Mice</subject><issn>1530-1605</issn><issn>2572-6862</issn><isbn>1424496187</isbn><isbn>9781424496181</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjL1OwzAYRS1-JELpyMTiF0jx5_h3jCJoI0VlaPbKcb7QQIgjJwLx9lQqdzhnObqEPALbADD7vCuLw2HDGcAZVyThUvNUGcWvyT0ILoRVYPQNSUBmLAXF5B1Zz_MHO09ybbhKSJXTffjGgRYhRhzc0oeR7nH5CfFzpvk0xeD8iXYh0uWEtGxxXPqu95cwdHSLI9LaxXdc5gdy27lhxvW_V6R-famLXVq9bcsir9LesiXVvEUvLEjtM5BCK4uOtU3TaOkFd9aD81w3iJk2THWslR1T0ApjvENpbLYiT5fbHhGPU-y_XPw9Sg1GZjr7A63XToQ</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Dempsey, K</creator><creator>Bonasera, S</creator><creator>Bastola, D</creator><creator>Ali, H</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201101</creationdate><title>A Novel Correlation Networks Approach for the Identification of Gene Targets</title><author>Dempsey, K ; Bonasera, S ; Bastola, D ; Ali, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-72dec49157c3154769ea0dbbb75c42a9c1ac27bee37806f0d5f061d488cae5893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aging</topic><topic>Correlation</topic><topic>Filtering theory</topic><topic>Gene expression</topic><topic>Mice</topic><toplevel>online_resources</toplevel><creatorcontrib>Dempsey, K</creatorcontrib><creatorcontrib>Bonasera, S</creatorcontrib><creatorcontrib>Bastola, D</creatorcontrib><creatorcontrib>Ali, H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dempsey, K</au><au>Bonasera, S</au><au>Bastola, D</au><au>Ali, H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Correlation Networks Approach for the Identification of Gene Targets</atitle><btitle>2011 44th Hawaii International Conference on System Sciences</btitle><stitle>hicss</stitle><date>2011-01</date><risdate>2011</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1530-1605</issn><eissn>2572-6862</eissn><isbn>1424496187</isbn><isbn>9781424496181</isbn><abstract>Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining co-expression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as the existence of "hub" nodes and semi-cliques that potentially correspond to critical cellular structures. Difficulty lies in filtering coincidental relationships from causative structures in these large, noise-heavy networks. As such, computational expenses and algorithm availability limit accurate comparison, making it difficult to identify changes between networks. In this vein, we present our work identifying temporal relationships from microarray data obtained from mice in three stages of life. We examine the characteristics of mouse networks, including correlation and node degree distributions. Further, we identify high degree nodes ("hubs") within networks and define their essentiality. Finally, we associate Gene Ontology annotations to network structures to deduce relationships between structure and cellular functions.</abstract><pub>IEEE</pub><doi>10.1109/HICSS.2011.20</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1605 |
ispartof | 2011 44th Hawaii International Conference on System Sciences, 2011, p.1-8 |
issn | 1530-1605 2572-6862 |
language | eng |
recordid | cdi_ieee_primary_5718537 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aging Correlation Filtering theory Gene expression Mice |
title | A Novel Correlation Networks Approach for the Identification of Gene Targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Correlation%20Networks%20Approach%20for%20the%20Identification%20of%20Gene%20Targets&rft.btitle=2011%2044th%20Hawaii%20International%20Conference%20on%20System%20Sciences&rft.au=Dempsey,%20K&rft.date=2011-01&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1530-1605&rft.eissn=2572-6862&rft.isbn=1424496187&rft.isbn_list=9781424496181&rft_id=info:doi/10.1109/HICSS.2011.20&rft_dat=%3Cieee_6IE%3E5718537%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5718537&rfr_iscdi=true |