A Novel Correlation Networks Approach for the Identification of Gene Targets

Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining co-expression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dempsey, K, Bonasera, S, Bastola, D, Ali, H
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Dempsey, K
Bonasera, S
Bastola, D
Ali, H
description Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining co-expression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as the existence of "hub" nodes and semi-cliques that potentially correspond to critical cellular structures. Difficulty lies in filtering coincidental relationships from causative structures in these large, noise-heavy networks. As such, computational expenses and algorithm availability limit accurate comparison, making it difficult to identify changes between networks. In this vein, we present our work identifying temporal relationships from microarray data obtained from mice in three stages of life. We examine the characteristics of mouse networks, including correlation and node degree distributions. Further, we identify high degree nodes ("hubs") within networks and define their essentiality. Finally, we associate Gene Ontology annotations to network structures to deduce relationships between structure and cellular functions.
doi_str_mv 10.1109/HICSS.2011.20
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5718537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5718537</ieee_id><sourcerecordid>5718537</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-72dec49157c3154769ea0dbbb75c42a9c1ac27bee37806f0d5f061d488cae5893</originalsourceid><addsrcrecordid>eNotjL1OwzAYRS1-JELpyMTiF0jx5_h3jCJoI0VlaPbKcb7QQIgjJwLx9lQqdzhnObqEPALbADD7vCuLw2HDGcAZVyThUvNUGcWvyT0ILoRVYPQNSUBmLAXF5B1Zz_MHO09ybbhKSJXTffjGgRYhRhzc0oeR7nH5CfFzpvk0xeD8iXYh0uWEtGxxXPqu95cwdHSLI9LaxXdc5gdy27lhxvW_V6R-famLXVq9bcsir9LesiXVvEUvLEjtM5BCK4uOtU3TaOkFd9aD81w3iJk2THWslR1T0ApjvENpbLYiT5fbHhGPU-y_XPw9Sg1GZjr7A63XToQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Correlation Networks Approach for the Identification of Gene Targets</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dempsey, K ; Bonasera, S ; Bastola, D ; Ali, H</creator><creatorcontrib>Dempsey, K ; Bonasera, S ; Bastola, D ; Ali, H</creatorcontrib><description>Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining co-expression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as the existence of "hub" nodes and semi-cliques that potentially correspond to critical cellular structures. Difficulty lies in filtering coincidental relationships from causative structures in these large, noise-heavy networks. As such, computational expenses and algorithm availability limit accurate comparison, making it difficult to identify changes between networks. In this vein, we present our work identifying temporal relationships from microarray data obtained from mice in three stages of life. We examine the characteristics of mouse networks, including correlation and node degree distributions. Further, we identify high degree nodes ("hubs") within networks and define their essentiality. Finally, we associate Gene Ontology annotations to network structures to deduce relationships between structure and cellular functions.</description><identifier>ISSN: 1530-1605</identifier><identifier>ISBN: 1424496187</identifier><identifier>ISBN: 9781424496181</identifier><identifier>EISSN: 2572-6862</identifier><identifier>DOI: 10.1109/HICSS.2011.20</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aging ; Correlation ; Filtering theory ; Gene expression ; Mice</subject><ispartof>2011 44th Hawaii International Conference on System Sciences, 2011, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5718537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5718537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dempsey, K</creatorcontrib><creatorcontrib>Bonasera, S</creatorcontrib><creatorcontrib>Bastola, D</creatorcontrib><creatorcontrib>Ali, H</creatorcontrib><title>A Novel Correlation Networks Approach for the Identification of Gene Targets</title><title>2011 44th Hawaii International Conference on System Sciences</title><addtitle>hicss</addtitle><description>Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining co-expression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as the existence of "hub" nodes and semi-cliques that potentially correspond to critical cellular structures. Difficulty lies in filtering coincidental relationships from causative structures in these large, noise-heavy networks. As such, computational expenses and algorithm availability limit accurate comparison, making it difficult to identify changes between networks. In this vein, we present our work identifying temporal relationships from microarray data obtained from mice in three stages of life. We examine the characteristics of mouse networks, including correlation and node degree distributions. Further, we identify high degree nodes ("hubs") within networks and define their essentiality. Finally, we associate Gene Ontology annotations to network structures to deduce relationships between structure and cellular functions.</description><subject>Aging</subject><subject>Correlation</subject><subject>Filtering theory</subject><subject>Gene expression</subject><subject>Mice</subject><issn>1530-1605</issn><issn>2572-6862</issn><isbn>1424496187</isbn><isbn>9781424496181</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjL1OwzAYRS1-JELpyMTiF0jx5_h3jCJoI0VlaPbKcb7QQIgjJwLx9lQqdzhnObqEPALbADD7vCuLw2HDGcAZVyThUvNUGcWvyT0ILoRVYPQNSUBmLAXF5B1Zz_MHO09ybbhKSJXTffjGgRYhRhzc0oeR7nH5CfFzpvk0xeD8iXYh0uWEtGxxXPqu95cwdHSLI9LaxXdc5gdy27lhxvW_V6R-famLXVq9bcsir9LesiXVvEUvLEjtM5BCK4uOtU3TaOkFd9aD81w3iJk2THWslR1T0ApjvENpbLYiT5fbHhGPU-y_XPw9Sg1GZjr7A63XToQ</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Dempsey, K</creator><creator>Bonasera, S</creator><creator>Bastola, D</creator><creator>Ali, H</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201101</creationdate><title>A Novel Correlation Networks Approach for the Identification of Gene Targets</title><author>Dempsey, K ; Bonasera, S ; Bastola, D ; Ali, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-72dec49157c3154769ea0dbbb75c42a9c1ac27bee37806f0d5f061d488cae5893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aging</topic><topic>Correlation</topic><topic>Filtering theory</topic><topic>Gene expression</topic><topic>Mice</topic><toplevel>online_resources</toplevel><creatorcontrib>Dempsey, K</creatorcontrib><creatorcontrib>Bonasera, S</creatorcontrib><creatorcontrib>Bastola, D</creatorcontrib><creatorcontrib>Ali, H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dempsey, K</au><au>Bonasera, S</au><au>Bastola, D</au><au>Ali, H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Correlation Networks Approach for the Identification of Gene Targets</atitle><btitle>2011 44th Hawaii International Conference on System Sciences</btitle><stitle>hicss</stitle><date>2011-01</date><risdate>2011</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1530-1605</issn><eissn>2572-6862</eissn><isbn>1424496187</isbn><isbn>9781424496181</isbn><abstract>Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining co-expression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as the existence of "hub" nodes and semi-cliques that potentially correspond to critical cellular structures. Difficulty lies in filtering coincidental relationships from causative structures in these large, noise-heavy networks. As such, computational expenses and algorithm availability limit accurate comparison, making it difficult to identify changes between networks. In this vein, we present our work identifying temporal relationships from microarray data obtained from mice in three stages of life. We examine the characteristics of mouse networks, including correlation and node degree distributions. Further, we identify high degree nodes ("hubs") within networks and define their essentiality. Finally, we associate Gene Ontology annotations to network structures to deduce relationships between structure and cellular functions.</abstract><pub>IEEE</pub><doi>10.1109/HICSS.2011.20</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1605
ispartof 2011 44th Hawaii International Conference on System Sciences, 2011, p.1-8
issn 1530-1605
2572-6862
language eng
recordid cdi_ieee_primary_5718537
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aging
Correlation
Filtering theory
Gene expression
Mice
title A Novel Correlation Networks Approach for the Identification of Gene Targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Correlation%20Networks%20Approach%20for%20the%20Identification%20of%20Gene%20Targets&rft.btitle=2011%2044th%20Hawaii%20International%20Conference%20on%20System%20Sciences&rft.au=Dempsey,%20K&rft.date=2011-01&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1530-1605&rft.eissn=2572-6862&rft.isbn=1424496187&rft.isbn_list=9781424496181&rft_id=info:doi/10.1109/HICSS.2011.20&rft_dat=%3Cieee_6IE%3E5718537%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5718537&rfr_iscdi=true