Design and experimental implementation of a compliant hybrid zero dynamics controller for walking on MABEL

This paper extends the method of virtual constraints and hybrid zero dynamics, developed for rigid robots with a single degree of underactuation, to MABEL, a planar biped with a novel compliant transmission. A time-invariant feedback controller is designed for realizing exponentially stable waking g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sreenath, K, Hae-Won Park, Poulakakis, I, Grizzle, J W
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue
container_start_page 280
container_title
container_volume
creator Sreenath, K
Hae-Won Park
Poulakakis, I
Grizzle, J W
description This paper extends the method of virtual constraints and hybrid zero dynamics, developed for rigid robots with a single degree of underactuation, to MABEL, a planar biped with a novel compliant transmission. A time-invariant feedback controller is designed for realizing exponentially stable waking gaits in such a way that the closed-loop system preserves the natural compliance of the system, and therefore the energetic benefits of springs. This is accomplished by incorporating the compliance into the hybrid zero dynamics. The compliant-hybrid-zero-dynamics-based controller is implemented experimentally and shown to realize stable walking gaits which make use of the compliance to store and return energy to the gait.
doi_str_mv 10.1109/CDC.2010.5718060
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5718060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5718060</ieee_id><sourcerecordid>5718060</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b4dd48d526072a82cbcccc9341b16c4f2f383cf80686302ef398d2734f763843</originalsourceid><addsrcrecordid>eNo1UMtOwzAQNAIk2tI7Ehf_QIpfsZ1jSctDCuLSA7fKie3i4jiREwnC12NB2cvs7GhGuwvADUYrjFFxV27KFUGJ5QJLxNEZWBZCYkYYE4Jxeg7m_yR_uwAzhAucEYL5FZgPwxEhlFx8Bo4bM7hDgCpoaL56E11rwqg8dG3vzW8_ui7AzkIFmy4NnQojfJ_q6DT8NrGDegqqdc2Q5DDGznsToe0i_FT-w4UDTO6X9f22ugaXVvnBLE-4ALuH7a58yqrXx-dyXWUOi3zMaqY1kzonHAmiJGnqJlVBGa4xb5gllkra2LS-5BQRY2khNRGUWcGpZHQBbv9inTFm36eDVJz2pzfRH4hvWjo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design and experimental implementation of a compliant hybrid zero dynamics controller for walking on MABEL</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sreenath, K ; Hae-Won Park ; Poulakakis, I ; Grizzle, J W</creator><creatorcontrib>Sreenath, K ; Hae-Won Park ; Poulakakis, I ; Grizzle, J W</creatorcontrib><description>This paper extends the method of virtual constraints and hybrid zero dynamics, developed for rigid robots with a single degree of underactuation, to MABEL, a planar biped with a novel compliant transmission. A time-invariant feedback controller is designed for realizing exponentially stable waking gaits in such a way that the closed-loop system preserves the natural compliance of the system, and therefore the energetic benefits of springs. This is accomplished by incorporating the compliance into the hybrid zero dynamics. The compliant-hybrid-zero-dynamics-based controller is implemented experimentally and shown to realize stable walking gaits which make use of the compliance to store and return energy to the gait.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 142447745X</identifier><identifier>ISBN: 9781424477456</identifier><identifier>EISBN: 9781424477463</identifier><identifier>EISBN: 1424477441</identifier><identifier>EISBN: 9781424477449</identifier><identifier>EISBN: 1424477468</identifier><identifier>DOI: 10.1109/CDC.2010.5718060</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Leg ; Legged locomotion ; Robot kinematics ; Springs ; Torso</subject><ispartof>49th IEEE Conference on Decision and Control (CDC), 2010, p.280-287</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5718060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5718060$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sreenath, K</creatorcontrib><creatorcontrib>Hae-Won Park</creatorcontrib><creatorcontrib>Poulakakis, I</creatorcontrib><creatorcontrib>Grizzle, J W</creatorcontrib><title>Design and experimental implementation of a compliant hybrid zero dynamics controller for walking on MABEL</title><title>49th IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>This paper extends the method of virtual constraints and hybrid zero dynamics, developed for rigid robots with a single degree of underactuation, to MABEL, a planar biped with a novel compliant transmission. A time-invariant feedback controller is designed for realizing exponentially stable waking gaits in such a way that the closed-loop system preserves the natural compliance of the system, and therefore the energetic benefits of springs. This is accomplished by incorporating the compliance into the hybrid zero dynamics. The compliant-hybrid-zero-dynamics-based controller is implemented experimentally and shown to realize stable walking gaits which make use of the compliance to store and return energy to the gait.</description><subject>Actuators</subject><subject>Leg</subject><subject>Legged locomotion</subject><subject>Robot kinematics</subject><subject>Springs</subject><subject>Torso</subject><issn>0191-2216</issn><isbn>142447745X</isbn><isbn>9781424477456</isbn><isbn>9781424477463</isbn><isbn>1424477441</isbn><isbn>9781424477449</isbn><isbn>1424477468</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtOwzAQNAIk2tI7Ehf_QIpfsZ1jSctDCuLSA7fKie3i4jiREwnC12NB2cvs7GhGuwvADUYrjFFxV27KFUGJ5QJLxNEZWBZCYkYYE4Jxeg7m_yR_uwAzhAucEYL5FZgPwxEhlFx8Bo4bM7hDgCpoaL56E11rwqg8dG3vzW8_ui7AzkIFmy4NnQojfJ_q6DT8NrGDegqqdc2Q5DDGznsToe0i_FT-w4UDTO6X9f22ugaXVvnBLE-4ALuH7a58yqrXx-dyXWUOi3zMaqY1kzonHAmiJGnqJlVBGa4xb5gllkra2LS-5BQRY2khNRGUWcGpZHQBbv9inTFm36eDVJz2pzfRH4hvWjo</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Sreenath, K</creator><creator>Hae-Won Park</creator><creator>Poulakakis, I</creator><creator>Grizzle, J W</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201012</creationdate><title>Design and experimental implementation of a compliant hybrid zero dynamics controller for walking on MABEL</title><author>Sreenath, K ; Hae-Won Park ; Poulakakis, I ; Grizzle, J W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b4dd48d526072a82cbcccc9341b16c4f2f383cf80686302ef398d2734f763843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actuators</topic><topic>Leg</topic><topic>Legged locomotion</topic><topic>Robot kinematics</topic><topic>Springs</topic><topic>Torso</topic><toplevel>online_resources</toplevel><creatorcontrib>Sreenath, K</creatorcontrib><creatorcontrib>Hae-Won Park</creatorcontrib><creatorcontrib>Poulakakis, I</creatorcontrib><creatorcontrib>Grizzle, J W</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sreenath, K</au><au>Hae-Won Park</au><au>Poulakakis, I</au><au>Grizzle, J W</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design and experimental implementation of a compliant hybrid zero dynamics controller for walking on MABEL</atitle><btitle>49th IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2010-12</date><risdate>2010</risdate><spage>280</spage><epage>287</epage><pages>280-287</pages><issn>0191-2216</issn><isbn>142447745X</isbn><isbn>9781424477456</isbn><eisbn>9781424477463</eisbn><eisbn>1424477441</eisbn><eisbn>9781424477449</eisbn><eisbn>1424477468</eisbn><abstract>This paper extends the method of virtual constraints and hybrid zero dynamics, developed for rigid robots with a single degree of underactuation, to MABEL, a planar biped with a novel compliant transmission. A time-invariant feedback controller is designed for realizing exponentially stable waking gaits in such a way that the closed-loop system preserves the natural compliance of the system, and therefore the energetic benefits of springs. This is accomplished by incorporating the compliance into the hybrid zero dynamics. The compliant-hybrid-zero-dynamics-based controller is implemented experimentally and shown to realize stable walking gaits which make use of the compliance to store and return energy to the gait.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2010.5718060</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 49th IEEE Conference on Decision and Control (CDC), 2010, p.280-287
issn 0191-2216
language eng
recordid cdi_ieee_primary_5718060
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Actuators
Leg
Legged locomotion
Robot kinematics
Springs
Torso
title Design and experimental implementation of a compliant hybrid zero dynamics controller for walking on MABEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20and%20experimental%20implementation%20of%20a%20compliant%20hybrid%20zero%20dynamics%20controller%20for%20walking%20on%20MABEL&rft.btitle=49th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Sreenath,%20K&rft.date=2010-12&rft.spage=280&rft.epage=287&rft.pages=280-287&rft.issn=0191-2216&rft.isbn=142447745X&rft.isbn_list=9781424477456&rft_id=info:doi/10.1109/CDC.2010.5718060&rft_dat=%3Cieee_6IE%3E5718060%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424477463&rft.eisbn_list=1424477441&rft.eisbn_list=9781424477449&rft.eisbn_list=1424477468&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5718060&rfr_iscdi=true