Adaptive harmonic steady-state disturbance rejection with frequency tracking

The paper is concerned with the rejection of sinusoidal disturbances of unknown frequency acting at the output of unknown plants. Disturbance rejection is based on an adaptive harmonic steady-state (ADHSS) algorithm combined with a magnitude/phase locked-loop (MPLL) frequency estimator. The paper sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pigg, S, Bodson, M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892
container_issue
container_start_page 887
container_title
container_volume
creator Pigg, S
Bodson, M
description The paper is concerned with the rejection of sinusoidal disturbances of unknown frequency acting at the output of unknown plants. Disturbance rejection is based on an adaptive harmonic steady-state (ADHSS) algorithm combined with a magnitude/phase locked-loop (MPLL) frequency estimator. The paper shows that when the MPLL is integrated with the ADHSS algorithm, the two components work together in such a way that the control input does not prevent frequency tracking by the MPLL and so that the order of the ADHSS can be reduced. Thus, the addition of the MPLL allows disturbances of unknown frequency to be considered without significantly increasing the complexity of the original ADHSS. From the theory of averaging, it is found that the system has a two-dimensional equilibrium surface such that the disturbance is exactly cancelled. A subset of the surface is proved to be locally stable. Active noise control experiments demonstrate the performance of the algorithm.
doi_str_mv 10.1109/CDC.2010.5717729
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5717729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5717729</ieee_id><sourcerecordid>5717729</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9f91d4dd0b31f920837ef699e79e488b2125150495c35516c9bf277cb98ce88e3</originalsourceid><addsrcrecordid>eNo1kD1PwzAUAI0AibZ0R2LxH0jx80fsN1aBAlIkFpDYKsd5oS40LY4L6r8HiTKdbrnhGLsCMQMQeFPdVjMpfs1YsFbiCZuidaCl1tbqUp2y8b-Y1zM2EoBQSAnlBRsPw1oI4URZjlg9b_0uxy_iK5822z4GPmTy7aEYss_E2zjkfWp8H4gnWlPIcdvz75hXvEv0uac-HHhOPrzH_u2SnXf-Y6DpkRP2srh7rh6K-un-sZrXRQRrcoEdQqvbVjQKOpTCKUtdiUgWSTvXSJAGjNBogjIGyoBNJ60NDbpAzpGasOu_biSi5S7FjU-H5fGE-gGma1A9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive harmonic steady-state disturbance rejection with frequency tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pigg, S ; Bodson, M</creator><creatorcontrib>Pigg, S ; Bodson, M</creatorcontrib><description>The paper is concerned with the rejection of sinusoidal disturbances of unknown frequency acting at the output of unknown plants. Disturbance rejection is based on an adaptive harmonic steady-state (ADHSS) algorithm combined with a magnitude/phase locked-loop (MPLL) frequency estimator. The paper shows that when the MPLL is integrated with the ADHSS algorithm, the two components work together in such a way that the control input does not prevent frequency tracking by the MPLL and so that the order of the ADHSS can be reduced. Thus, the addition of the MPLL allows disturbances of unknown frequency to be considered without significantly increasing the complexity of the original ADHSS. From the theory of averaging, it is found that the system has a two-dimensional equilibrium surface such that the disturbance is exactly cancelled. A subset of the surface is proved to be locally stable. Active noise control experiments demonstrate the performance of the algorithm.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 142447745X</identifier><identifier>ISBN: 9781424477456</identifier><identifier>EISBN: 9781424477463</identifier><identifier>EISBN: 1424477441</identifier><identifier>EISBN: 9781424477449</identifier><identifier>EISBN: 1424477468</identifier><identifier>DOI: 10.1109/CDC.2010.5717729</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Equations ; Frequency control ; Frequency estimation ; Frequency response ; Stability analysis ; Steady-state</subject><ispartof>49th IEEE Conference on Decision and Control (CDC), 2010, p.887-892</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5717729$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5717729$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pigg, S</creatorcontrib><creatorcontrib>Bodson, M</creatorcontrib><title>Adaptive harmonic steady-state disturbance rejection with frequency tracking</title><title>49th IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>The paper is concerned with the rejection of sinusoidal disturbances of unknown frequency acting at the output of unknown plants. Disturbance rejection is based on an adaptive harmonic steady-state (ADHSS) algorithm combined with a magnitude/phase locked-loop (MPLL) frequency estimator. The paper shows that when the MPLL is integrated with the ADHSS algorithm, the two components work together in such a way that the control input does not prevent frequency tracking by the MPLL and so that the order of the ADHSS can be reduced. Thus, the addition of the MPLL allows disturbances of unknown frequency to be considered without significantly increasing the complexity of the original ADHSS. From the theory of averaging, it is found that the system has a two-dimensional equilibrium surface such that the disturbance is exactly cancelled. A subset of the surface is proved to be locally stable. Active noise control experiments demonstrate the performance of the algorithm.</description><subject>Approximation algorithms</subject><subject>Equations</subject><subject>Frequency control</subject><subject>Frequency estimation</subject><subject>Frequency response</subject><subject>Stability analysis</subject><subject>Steady-state</subject><issn>0191-2216</issn><isbn>142447745X</isbn><isbn>9781424477456</isbn><isbn>9781424477463</isbn><isbn>1424477441</isbn><isbn>9781424477449</isbn><isbn>1424477468</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kD1PwzAUAI0AibZ0R2LxH0jx80fsN1aBAlIkFpDYKsd5oS40LY4L6r8HiTKdbrnhGLsCMQMQeFPdVjMpfs1YsFbiCZuidaCl1tbqUp2y8b-Y1zM2EoBQSAnlBRsPw1oI4URZjlg9b_0uxy_iK5822z4GPmTy7aEYss_E2zjkfWp8H4gnWlPIcdvz75hXvEv0uac-HHhOPrzH_u2SnXf-Y6DpkRP2srh7rh6K-un-sZrXRQRrcoEdQqvbVjQKOpTCKUtdiUgWSTvXSJAGjNBogjIGyoBNJ60NDbpAzpGasOu_biSi5S7FjU-H5fGE-gGma1A9</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Pigg, S</creator><creator>Bodson, M</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201012</creationdate><title>Adaptive harmonic steady-state disturbance rejection with frequency tracking</title><author>Pigg, S ; Bodson, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9f91d4dd0b31f920837ef699e79e488b2125150495c35516c9bf277cb98ce88e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation algorithms</topic><topic>Equations</topic><topic>Frequency control</topic><topic>Frequency estimation</topic><topic>Frequency response</topic><topic>Stability analysis</topic><topic>Steady-state</topic><toplevel>online_resources</toplevel><creatorcontrib>Pigg, S</creatorcontrib><creatorcontrib>Bodson, M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pigg, S</au><au>Bodson, M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive harmonic steady-state disturbance rejection with frequency tracking</atitle><btitle>49th IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2010-12</date><risdate>2010</risdate><spage>887</spage><epage>892</epage><pages>887-892</pages><issn>0191-2216</issn><isbn>142447745X</isbn><isbn>9781424477456</isbn><eisbn>9781424477463</eisbn><eisbn>1424477441</eisbn><eisbn>9781424477449</eisbn><eisbn>1424477468</eisbn><abstract>The paper is concerned with the rejection of sinusoidal disturbances of unknown frequency acting at the output of unknown plants. Disturbance rejection is based on an adaptive harmonic steady-state (ADHSS) algorithm combined with a magnitude/phase locked-loop (MPLL) frequency estimator. The paper shows that when the MPLL is integrated with the ADHSS algorithm, the two components work together in such a way that the control input does not prevent frequency tracking by the MPLL and so that the order of the ADHSS can be reduced. Thus, the addition of the MPLL allows disturbances of unknown frequency to be considered without significantly increasing the complexity of the original ADHSS. From the theory of averaging, it is found that the system has a two-dimensional equilibrium surface such that the disturbance is exactly cancelled. A subset of the surface is proved to be locally stable. Active noise control experiments demonstrate the performance of the algorithm.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2010.5717729</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 49th IEEE Conference on Decision and Control (CDC), 2010, p.887-892
issn 0191-2216
language eng
recordid cdi_ieee_primary_5717729
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Equations
Frequency control
Frequency estimation
Frequency response
Stability analysis
Steady-state
title Adaptive harmonic steady-state disturbance rejection with frequency tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20harmonic%20steady-state%20disturbance%20rejection%20with%20frequency%20tracking&rft.btitle=49th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Pigg,%20S&rft.date=2010-12&rft.spage=887&rft.epage=892&rft.pages=887-892&rft.issn=0191-2216&rft.isbn=142447745X&rft.isbn_list=9781424477456&rft_id=info:doi/10.1109/CDC.2010.5717729&rft_dat=%3Cieee_6IE%3E5717729%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424477463&rft.eisbn_list=1424477441&rft.eisbn_list=9781424477449&rft.eisbn_list=1424477468&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5717729&rfr_iscdi=true