Control of preferences in social networks

We consider the problem of deriving optimal advertising policies for the spread of innovations in a social network. We seek to compute policies that account for i) endogenous network influences, ii) the presence of competitive firms, that also wish to influence the network, and iii) possible uncerta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chasparis, G C, Shamma, J S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6656
container_issue
container_start_page 6651
container_title
container_volume
creator Chasparis, G C
Shamma, J S
description We consider the problem of deriving optimal advertising policies for the spread of innovations in a social network. We seek to compute policies that account for i) endogenous network influences, ii) the presence of competitive firms, that also wish to influence the network, and iii) possible uncertainties in the network model. Contrary to prior work in optimal advertising, which also accounts for network influences, we assume a dynamic model of preferences and we compute optimal policies for either finite or infinite horizons. We also compute robust optimal policies in the case where the evolution of preferences is also affected by external disturbances. Finally, in the presence of a competitive firm, we compute optimal Stackelberg and Nash solutions.
doi_str_mv 10.1109/CDC.2010.5717491
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5717491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5717491</ieee_id><sourcerecordid>5717491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-ad842a9ba7a43772d6ebc7053d21603cb8f75fab3e8d017cb18865f8d5cf654c3</originalsourceid><addsrcrecordid>eNo1j01Lw0AURUdUsK3dC26ydZH2vfl6k6XEqoWCGwV3ZTJ5A9GYlJmA-O8tWFeHszmXK8QNwgoRqnX9UK8kHM0Qkq7wTCwrcqil1kTaqnMx_xfzfiFmgBWWUqK9EvOcPwDAgbUzcVePw5TGvhhjcUgcOfEQOBfdUOQxdL4vBp6-x_SZr8Vl9H3m5YkL8fa4ea2fy93L07a-35VBIU6lb52Wvmo8ea2IZGu5CQRGtcdxUKFxkUz0jWLXAlJo0DlromtNiNbooBbi9q_bMfP-kLovn372p5vqF2yUQ0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Control of preferences in social networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chasparis, G C ; Shamma, J S</creator><creatorcontrib>Chasparis, G C ; Shamma, J S</creatorcontrib><description>We consider the problem of deriving optimal advertising policies for the spread of innovations in a social network. We seek to compute policies that account for i) endogenous network influences, ii) the presence of competitive firms, that also wish to influence the network, and iii) possible uncertainties in the network model. Contrary to prior work in optimal advertising, which also accounts for network influences, we assume a dynamic model of preferences and we compute optimal policies for either finite or infinite horizons. We also compute robust optimal policies in the case where the evolution of preferences is also affected by external disturbances. Finally, in the presence of a competitive firm, we compute optimal Stackelberg and Nash solutions.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 142447745X</identifier><identifier>ISBN: 9781424477456</identifier><identifier>EISBN: 9781424477463</identifier><identifier>EISBN: 1424477441</identifier><identifier>EISBN: 9781424477449</identifier><identifier>EISBN: 1424477468</identifier><identifier>DOI: 10.1109/CDC.2010.5717491</identifier><language>eng</language><publisher>IEEE</publisher><subject>Advertising ; Computational modeling ; Monopoly ; Optimal control ; Optimization ; Uncertainty</subject><ispartof>49th IEEE Conference on Decision and Control (CDC), 2010, p.6651-6656</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-ad842a9ba7a43772d6ebc7053d21603cb8f75fab3e8d017cb18865f8d5cf654c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5717491$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5717491$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chasparis, G C</creatorcontrib><creatorcontrib>Shamma, J S</creatorcontrib><title>Control of preferences in social networks</title><title>49th IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>We consider the problem of deriving optimal advertising policies for the spread of innovations in a social network. We seek to compute policies that account for i) endogenous network influences, ii) the presence of competitive firms, that also wish to influence the network, and iii) possible uncertainties in the network model. Contrary to prior work in optimal advertising, which also accounts for network influences, we assume a dynamic model of preferences and we compute optimal policies for either finite or infinite horizons. We also compute robust optimal policies in the case where the evolution of preferences is also affected by external disturbances. Finally, in the presence of a competitive firm, we compute optimal Stackelberg and Nash solutions.</description><subject>Advertising</subject><subject>Computational modeling</subject><subject>Monopoly</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Uncertainty</subject><issn>0191-2216</issn><isbn>142447745X</isbn><isbn>9781424477456</isbn><isbn>9781424477463</isbn><isbn>1424477441</isbn><isbn>9781424477449</isbn><isbn>1424477468</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j01Lw0AURUdUsK3dC26ydZH2vfl6k6XEqoWCGwV3ZTJ5A9GYlJmA-O8tWFeHszmXK8QNwgoRqnX9UK8kHM0Qkq7wTCwrcqil1kTaqnMx_xfzfiFmgBWWUqK9EvOcPwDAgbUzcVePw5TGvhhjcUgcOfEQOBfdUOQxdL4vBp6-x_SZr8Vl9H3m5YkL8fa4ea2fy93L07a-35VBIU6lb52Wvmo8ea2IZGu5CQRGtcdxUKFxkUz0jWLXAlJo0DlromtNiNbooBbi9q_bMfP-kLovn372p5vqF2yUQ0A</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Chasparis, G C</creator><creator>Shamma, J S</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Control of preferences in social networks</title><author>Chasparis, G C ; Shamma, J S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-ad842a9ba7a43772d6ebc7053d21603cb8f75fab3e8d017cb18865f8d5cf654c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Advertising</topic><topic>Computational modeling</topic><topic>Monopoly</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Chasparis, G C</creatorcontrib><creatorcontrib>Shamma, J S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chasparis, G C</au><au>Shamma, J S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Control of preferences in social networks</atitle><btitle>49th IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>6651</spage><epage>6656</epage><pages>6651-6656</pages><issn>0191-2216</issn><isbn>142447745X</isbn><isbn>9781424477456</isbn><eisbn>9781424477463</eisbn><eisbn>1424477441</eisbn><eisbn>9781424477449</eisbn><eisbn>1424477468</eisbn><abstract>We consider the problem of deriving optimal advertising policies for the spread of innovations in a social network. We seek to compute policies that account for i) endogenous network influences, ii) the presence of competitive firms, that also wish to influence the network, and iii) possible uncertainties in the network model. Contrary to prior work in optimal advertising, which also accounts for network influences, we assume a dynamic model of preferences and we compute optimal policies for either finite or infinite horizons. We also compute robust optimal policies in the case where the evolution of preferences is also affected by external disturbances. Finally, in the presence of a competitive firm, we compute optimal Stackelberg and Nash solutions.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2010.5717491</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 49th IEEE Conference on Decision and Control (CDC), 2010, p.6651-6656
issn 0191-2216
language eng
recordid cdi_ieee_primary_5717491
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Advertising
Computational modeling
Monopoly
Optimal control
Optimization
Uncertainty
title Control of preferences in social networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Control%20of%20preferences%20in%20social%20networks&rft.btitle=49th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Chasparis,%20G%20C&rft.date=2010-01-01&rft.spage=6651&rft.epage=6656&rft.pages=6651-6656&rft.issn=0191-2216&rft.isbn=142447745X&rft.isbn_list=9781424477456&rft_id=info:doi/10.1109/CDC.2010.5717491&rft_dat=%3Cieee_6IE%3E5717491%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424477463&rft.eisbn_list=1424477441&rft.eisbn_list=9781424477449&rft.eisbn_list=1424477468&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5717491&rfr_iscdi=true