Recursive least square based estimation of MEMS inertial sensor stochastic models

In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abeywardena, D M W, Munasinghe, S R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 428
container_issue
container_start_page 424
container_title
container_volume
creator Abeywardena, D M W
Munasinghe, S R
description In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method for recursive least square estimation to reduce the computation complexity. This reduction leads to an efficient online dynamic estimation of inertial sensor error model which can then augment a navigation system based on such sensors. Simulation results and actual inertial sensor data are analyzed and it is shown that the RLS estimate can achieve a 20% reduction in forward prediction error as compared to the non-recursive estimate.
doi_str_mv 10.1109/ICIAFS.2010.5715699
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5715699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5715699</ieee_id><sourcerecordid>5715699</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-79946f38ce82be0c21ca095c30c392f29d198449242691e57c609dbe1e290c33</originalsourceid><addsrcrecordid>eNo9UF1LwzAUjV_gnP0Fe8kf6MxNkzb3cZRNCxui9X2k6S1GulabTvDfW7B4Xg6cj8vlMLYCsQYQ-FDkxWZXrqWYBJ2BThEvWISZASWVMlqDvGQLCRpiMCCu2N1sKNTX_4aQtywK4UNMSDCFzCzYyyu58xD8N_GWbBh5-DrbgXhlA9WcwuhPdvR9x_uGH7aHkvuOhtHblgfqQj_wMPbufSp6x099TW24ZzeNbQNFMy9Zudu-5U_x_vmxyDf72KMY4wxRpU1iHBlZkXASnBWoXSJcgrKRWAMapVAqmSKQzlwqsK4ISOIUSZZs9XfVE9Hxc5jeHH6O8zbJLz8SU90</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recursive least square based estimation of MEMS inertial sensor stochastic models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abeywardena, D M W ; Munasinghe, S R</creator><creatorcontrib>Abeywardena, D M W ; Munasinghe, S R</creatorcontrib><description>In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method for recursive least square estimation to reduce the computation complexity. This reduction leads to an efficient online dynamic estimation of inertial sensor error model which can then augment a navigation system based on such sensors. Simulation results and actual inertial sensor data are analyzed and it is shown that the RLS estimate can achieve a 20% reduction in forward prediction error as compared to the non-recursive estimate.</description><identifier>ISSN: 2151-1802</identifier><identifier>ISBN: 1424485495</identifier><identifier>ISBN: 9781424485499</identifier><identifier>EISSN: 2151-1810</identifier><identifier>EISBN: 9781424485512</identifier><identifier>EISBN: 1424485517</identifier><identifier>EISBN: 1424485525</identifier><identifier>EISBN: 9781424485529</identifier><identifier>DOI: 10.1109/ICIAFS.2010.5715699</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Correlation ; Estimation ; Least squares approximation ; Mathematical model ; Micromechanical devices ; Stochastic processes</subject><ispartof>2010 Fifth International Conference on Information and Automation for Sustainability, 2010, p.424-428</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5715699$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5715699$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abeywardena, D M W</creatorcontrib><creatorcontrib>Munasinghe, S R</creatorcontrib><title>Recursive least square based estimation of MEMS inertial sensor stochastic models</title><title>2010 Fifth International Conference on Information and Automation for Sustainability</title><addtitle>ICIAFS</addtitle><description>In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method for recursive least square estimation to reduce the computation complexity. This reduction leads to an efficient online dynamic estimation of inertial sensor error model which can then augment a navigation system based on such sensors. Simulation results and actual inertial sensor data are analyzed and it is shown that the RLS estimate can achieve a 20% reduction in forward prediction error as compared to the non-recursive estimate.</description><subject>Analytical models</subject><subject>Correlation</subject><subject>Estimation</subject><subject>Least squares approximation</subject><subject>Mathematical model</subject><subject>Micromechanical devices</subject><subject>Stochastic processes</subject><issn>2151-1802</issn><issn>2151-1810</issn><isbn>1424485495</isbn><isbn>9781424485499</isbn><isbn>9781424485512</isbn><isbn>1424485517</isbn><isbn>1424485525</isbn><isbn>9781424485529</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UF1LwzAUjV_gnP0Fe8kf6MxNkzb3cZRNCxui9X2k6S1GulabTvDfW7B4Xg6cj8vlMLYCsQYQ-FDkxWZXrqWYBJ2BThEvWISZASWVMlqDvGQLCRpiMCCu2N1sKNTX_4aQtywK4UNMSDCFzCzYyyu58xD8N_GWbBh5-DrbgXhlA9WcwuhPdvR9x_uGH7aHkvuOhtHblgfqQj_wMPbufSp6x099TW24ZzeNbQNFMy9Zudu-5U_x_vmxyDf72KMY4wxRpU1iHBlZkXASnBWoXSJcgrKRWAMapVAqmSKQzlwqsK4ISOIUSZZs9XfVE9Hxc5jeHH6O8zbJLz8SU90</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Abeywardena, D M W</creator><creator>Munasinghe, S R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Recursive least square based estimation of MEMS inertial sensor stochastic models</title><author>Abeywardena, D M W ; Munasinghe, S R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-79946f38ce82be0c21ca095c30c392f29d198449242691e57c609dbe1e290c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Correlation</topic><topic>Estimation</topic><topic>Least squares approximation</topic><topic>Mathematical model</topic><topic>Micromechanical devices</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Abeywardena, D M W</creatorcontrib><creatorcontrib>Munasinghe, S R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abeywardena, D M W</au><au>Munasinghe, S R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recursive least square based estimation of MEMS inertial sensor stochastic models</atitle><btitle>2010 Fifth International Conference on Information and Automation for Sustainability</btitle><stitle>ICIAFS</stitle><date>2010-12</date><risdate>2010</risdate><spage>424</spage><epage>428</epage><pages>424-428</pages><issn>2151-1802</issn><eissn>2151-1810</eissn><isbn>1424485495</isbn><isbn>9781424485499</isbn><eisbn>9781424485512</eisbn><eisbn>1424485517</eisbn><eisbn>1424485525</eisbn><eisbn>9781424485529</eisbn><abstract>In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method for recursive least square estimation to reduce the computation complexity. This reduction leads to an efficient online dynamic estimation of inertial sensor error model which can then augment a navigation system based on such sensors. Simulation results and actual inertial sensor data are analyzed and it is shown that the RLS estimate can achieve a 20% reduction in forward prediction error as compared to the non-recursive estimate.</abstract><pub>IEEE</pub><doi>10.1109/ICIAFS.2010.5715699</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-1802
ispartof 2010 Fifth International Conference on Information and Automation for Sustainability, 2010, p.424-428
issn 2151-1802
2151-1810
language eng
recordid cdi_ieee_primary_5715699
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Correlation
Estimation
Least squares approximation
Mathematical model
Micromechanical devices
Stochastic processes
title Recursive least square based estimation of MEMS inertial sensor stochastic models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recursive%20least%20square%20based%20estimation%20of%20MEMS%20inertial%20sensor%20stochastic%20models&rft.btitle=2010%20Fifth%20International%20Conference%20on%20Information%20and%20Automation%20for%20Sustainability&rft.au=Abeywardena,%20D%20M%20W&rft.date=2010-12&rft.spage=424&rft.epage=428&rft.pages=424-428&rft.issn=2151-1802&rft.eissn=2151-1810&rft.isbn=1424485495&rft.isbn_list=9781424485499&rft_id=info:doi/10.1109/ICIAFS.2010.5715699&rft_dat=%3Cieee_6IE%3E5715699%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424485512&rft.eisbn_list=1424485517&rft.eisbn_list=1424485525&rft.eisbn_list=9781424485529&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5715699&rfr_iscdi=true