Recursive least square based estimation of MEMS inertial sensor stochastic models
In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 428 |
---|---|
container_issue | |
container_start_page | 424 |
container_title | |
container_volume | |
creator | Abeywardena, D M W Munasinghe, S R |
description | In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method for recursive least square estimation to reduce the computation complexity. This reduction leads to an efficient online dynamic estimation of inertial sensor error model which can then augment a navigation system based on such sensors. Simulation results and actual inertial sensor data are analyzed and it is shown that the RLS estimate can achieve a 20% reduction in forward prediction error as compared to the non-recursive estimate. |
doi_str_mv | 10.1109/ICIAFS.2010.5715699 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5715699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5715699</ieee_id><sourcerecordid>5715699</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-79946f38ce82be0c21ca095c30c392f29d198449242691e57c609dbe1e290c33</originalsourceid><addsrcrecordid>eNo9UF1LwzAUjV_gnP0Fe8kf6MxNkzb3cZRNCxui9X2k6S1GulabTvDfW7B4Xg6cj8vlMLYCsQYQ-FDkxWZXrqWYBJ2BThEvWISZASWVMlqDvGQLCRpiMCCu2N1sKNTX_4aQtywK4UNMSDCFzCzYyyu58xD8N_GWbBh5-DrbgXhlA9WcwuhPdvR9x_uGH7aHkvuOhtHblgfqQj_wMPbufSp6x099TW24ZzeNbQNFMy9Zudu-5U_x_vmxyDf72KMY4wxRpU1iHBlZkXASnBWoXSJcgrKRWAMapVAqmSKQzlwqsK4ISOIUSZZs9XfVE9Hxc5jeHH6O8zbJLz8SU90</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recursive least square based estimation of MEMS inertial sensor stochastic models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abeywardena, D M W ; Munasinghe, S R</creator><creatorcontrib>Abeywardena, D M W ; Munasinghe, S R</creatorcontrib><description>In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method for recursive least square estimation to reduce the computation complexity. This reduction leads to an efficient online dynamic estimation of inertial sensor error model which can then augment a navigation system based on such sensors. Simulation results and actual inertial sensor data are analyzed and it is shown that the RLS estimate can achieve a 20% reduction in forward prediction error as compared to the non-recursive estimate.</description><identifier>ISSN: 2151-1802</identifier><identifier>ISBN: 1424485495</identifier><identifier>ISBN: 9781424485499</identifier><identifier>EISSN: 2151-1810</identifier><identifier>EISBN: 9781424485512</identifier><identifier>EISBN: 1424485517</identifier><identifier>EISBN: 1424485525</identifier><identifier>EISBN: 9781424485529</identifier><identifier>DOI: 10.1109/ICIAFS.2010.5715699</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Correlation ; Estimation ; Least squares approximation ; Mathematical model ; Micromechanical devices ; Stochastic processes</subject><ispartof>2010 Fifth International Conference on Information and Automation for Sustainability, 2010, p.424-428</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5715699$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5715699$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abeywardena, D M W</creatorcontrib><creatorcontrib>Munasinghe, S R</creatorcontrib><title>Recursive least square based estimation of MEMS inertial sensor stochastic models</title><title>2010 Fifth International Conference on Information and Automation for Sustainability</title><addtitle>ICIAFS</addtitle><description>In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method for recursive least square estimation to reduce the computation complexity. This reduction leads to an efficient online dynamic estimation of inertial sensor error model which can then augment a navigation system based on such sensors. Simulation results and actual inertial sensor data are analyzed and it is shown that the RLS estimate can achieve a 20% reduction in forward prediction error as compared to the non-recursive estimate.</description><subject>Analytical models</subject><subject>Correlation</subject><subject>Estimation</subject><subject>Least squares approximation</subject><subject>Mathematical model</subject><subject>Micromechanical devices</subject><subject>Stochastic processes</subject><issn>2151-1802</issn><issn>2151-1810</issn><isbn>1424485495</isbn><isbn>9781424485499</isbn><isbn>9781424485512</isbn><isbn>1424485517</isbn><isbn>1424485525</isbn><isbn>9781424485529</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UF1LwzAUjV_gnP0Fe8kf6MxNkzb3cZRNCxui9X2k6S1GulabTvDfW7B4Xg6cj8vlMLYCsQYQ-FDkxWZXrqWYBJ2BThEvWISZASWVMlqDvGQLCRpiMCCu2N1sKNTX_4aQtywK4UNMSDCFzCzYyyu58xD8N_GWbBh5-DrbgXhlA9WcwuhPdvR9x_uGH7aHkvuOhtHblgfqQj_wMPbufSp6x099TW24ZzeNbQNFMy9Zudu-5U_x_vmxyDf72KMY4wxRpU1iHBlZkXASnBWoXSJcgrKRWAMapVAqmSKQzlwqsK4ISOIUSZZs9XfVE9Hxc5jeHH6O8zbJLz8SU90</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Abeywardena, D M W</creator><creator>Munasinghe, S R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Recursive least square based estimation of MEMS inertial sensor stochastic models</title><author>Abeywardena, D M W ; Munasinghe, S R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-79946f38ce82be0c21ca095c30c392f29d198449242691e57c609dbe1e290c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Correlation</topic><topic>Estimation</topic><topic>Least squares approximation</topic><topic>Mathematical model</topic><topic>Micromechanical devices</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Abeywardena, D M W</creatorcontrib><creatorcontrib>Munasinghe, S R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abeywardena, D M W</au><au>Munasinghe, S R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recursive least square based estimation of MEMS inertial sensor stochastic models</atitle><btitle>2010 Fifth International Conference on Information and Automation for Sustainability</btitle><stitle>ICIAFS</stitle><date>2010-12</date><risdate>2010</risdate><spage>424</spage><epage>428</epage><pages>424-428</pages><issn>2151-1802</issn><eissn>2151-1810</eissn><isbn>1424485495</isbn><isbn>9781424485499</isbn><eisbn>9781424485512</eisbn><eisbn>1424485517</eisbn><eisbn>1424485525</eisbn><eisbn>9781424485529</eisbn><abstract>In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method for recursive least square estimation to reduce the computation complexity. This reduction leads to an efficient online dynamic estimation of inertial sensor error model which can then augment a navigation system based on such sensors. Simulation results and actual inertial sensor data are analyzed and it is shown that the RLS estimate can achieve a 20% reduction in forward prediction error as compared to the non-recursive estimate.</abstract><pub>IEEE</pub><doi>10.1109/ICIAFS.2010.5715699</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2151-1802 |
ispartof | 2010 Fifth International Conference on Information and Automation for Sustainability, 2010, p.424-428 |
issn | 2151-1802 2151-1810 |
language | eng |
recordid | cdi_ieee_primary_5715699 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Correlation Estimation Least squares approximation Mathematical model Micromechanical devices Stochastic processes |
title | Recursive least square based estimation of MEMS inertial sensor stochastic models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recursive%20least%20square%20based%20estimation%20of%20MEMS%20inertial%20sensor%20stochastic%20models&rft.btitle=2010%20Fifth%20International%20Conference%20on%20Information%20and%20Automation%20for%20Sustainability&rft.au=Abeywardena,%20D%20M%20W&rft.date=2010-12&rft.spage=424&rft.epage=428&rft.pages=424-428&rft.issn=2151-1802&rft.eissn=2151-1810&rft.isbn=1424485495&rft.isbn_list=9781424485499&rft_id=info:doi/10.1109/ICIAFS.2010.5715699&rft_dat=%3Cieee_6IE%3E5715699%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424485512&rft.eisbn_list=1424485517&rft.eisbn_list=1424485525&rft.eisbn_list=9781424485529&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5715699&rfr_iscdi=true |