Emergence of Neuronal Groups on a Self-Organized Spiking Neurons Network Based on Genetic Algorithm

Based on the Theory of Neuronal Group Selection (TNGS), proposed by Edelman, a network composed of one hundred Izhikevich spiking neurons is analyzed. In this study, a genetic algorithm is used to estimate the Izhikevich neuron model parameters in order to enable the self-organization of a neural ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Soares, G E, Borges, H E, Gomes, R M, Oliveira, G M C
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 43
container_title
container_volume
creator Soares, G E
Borges, H E
Gomes, R M
Oliveira, G M C
description Based on the Theory of Neuronal Group Selection (TNGS), proposed by Edelman, a network composed of one hundred Izhikevich spiking neurons is analyzed. In this study, a genetic algorithm is used to estimate the Izhikevich neuron model parameters in order to enable the self-organization of a neural network into a cluster of tightly coupled neural cells which fire and oscillate in synchrony at a predefined frequency.
doi_str_mv 10.1109/SBRN.2010.16
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5715211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5715211</ieee_id><sourcerecordid>5715211</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-984cbf2cda16490f58c19fe200485e6cf5eaed0daab42c5e485aa4a99316d4e03</originalsourceid><addsrcrecordid>eNotT8tOwkAUHV-JiOzcuZkfKM6znbsEgmhCILHsyTC9U0dKS6YlBr_eGjmbk3seNzmEPHE25pzBSz79WI0F-zvTKzKCzLAsBa0EZ-KaDITMdMKE1DfkgSuhlJHA5S0ZcC1EogzAPRm17RfroYURGgbEzQ8YS6wd0sbTFZ5iU9uKLmJzOra0qamlOVY-WcfS1uEHC5ofwz7U5SXb9tx9N3FPp7bt3b6xwBq74OikKpsYus_DI7nztmpxdOEh2bzON7O3ZLlevM8myyQA6xIwyu28cIXlqQLmtXEcPArGlNGYOq_RYsEKa3dKOI29aq2yAJKnhUImh-T5_21AxO0xhoON563O-vWcy19kb1nA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Emergence of Neuronal Groups on a Self-Organized Spiking Neurons Network Based on Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Soares, G E ; Borges, H E ; Gomes, R M ; Oliveira, G M C</creator><creatorcontrib>Soares, G E ; Borges, H E ; Gomes, R M ; Oliveira, G M C</creatorcontrib><description>Based on the Theory of Neuronal Group Selection (TNGS), proposed by Edelman, a network composed of one hundred Izhikevich spiking neurons is analyzed. In this study, a genetic algorithm is used to estimate the Izhikevich neuron model parameters in order to enable the self-organization of a neural network into a cluster of tightly coupled neural cells which fire and oscillate in synchrony at a predefined frequency.</description><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424483913</identifier><identifier>ISBN: 9781424483914</identifier><identifier>EISSN: 2375-0235</identifier><identifier>EISBN: 9780769542102</identifier><identifier>EISBN: 0769542107</identifier><identifier>DOI: 10.1109/SBRN.2010.16</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological system modeling ; Computational modeling ; Frequency synchronization ; genetic algorithm ; Mathematical model ; neural networks ; Neurons ; spiking neuron ; Wave functions</subject><ispartof>2010 Eleventh Brazilian Symposium on Neural Networks, 2010, p.43-48</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5715211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5715211$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soares, G E</creatorcontrib><creatorcontrib>Borges, H E</creatorcontrib><creatorcontrib>Gomes, R M</creatorcontrib><creatorcontrib>Oliveira, G M C</creatorcontrib><title>Emergence of Neuronal Groups on a Self-Organized Spiking Neurons Network Based on Genetic Algorithm</title><title>2010 Eleventh Brazilian Symposium on Neural Networks</title><addtitle>sbrn</addtitle><description>Based on the Theory of Neuronal Group Selection (TNGS), proposed by Edelman, a network composed of one hundred Izhikevich spiking neurons is analyzed. In this study, a genetic algorithm is used to estimate the Izhikevich neuron model parameters in order to enable the self-organization of a neural network into a cluster of tightly coupled neural cells which fire and oscillate in synchrony at a predefined frequency.</description><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Frequency synchronization</subject><subject>genetic algorithm</subject><subject>Mathematical model</subject><subject>neural networks</subject><subject>Neurons</subject><subject>spiking neuron</subject><subject>Wave functions</subject><issn>1522-4899</issn><issn>2375-0235</issn><isbn>1424483913</isbn><isbn>9781424483914</isbn><isbn>9780769542102</isbn><isbn>0769542107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT8tOwkAUHV-JiOzcuZkfKM6znbsEgmhCILHsyTC9U0dKS6YlBr_eGjmbk3seNzmEPHE25pzBSz79WI0F-zvTKzKCzLAsBa0EZ-KaDITMdMKE1DfkgSuhlJHA5S0ZcC1EogzAPRm17RfroYURGgbEzQ8YS6wd0sbTFZ5iU9uKLmJzOra0qamlOVY-WcfS1uEHC5ofwz7U5SXb9tx9N3FPp7bt3b6xwBq74OikKpsYus_DI7nztmpxdOEh2bzON7O3ZLlevM8myyQA6xIwyu28cIXlqQLmtXEcPArGlNGYOq_RYsEKa3dKOI29aq2yAJKnhUImh-T5_21AxO0xhoON563O-vWcy19kb1nA</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Soares, G E</creator><creator>Borges, H E</creator><creator>Gomes, R M</creator><creator>Oliveira, G M C</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Emergence of Neuronal Groups on a Self-Organized Spiking Neurons Network Based on Genetic Algorithm</title><author>Soares, G E ; Borges, H E ; Gomes, R M ; Oliveira, G M C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-984cbf2cda16490f58c19fe200485e6cf5eaed0daab42c5e485aa4a99316d4e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Frequency synchronization</topic><topic>genetic algorithm</topic><topic>Mathematical model</topic><topic>neural networks</topic><topic>Neurons</topic><topic>spiking neuron</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Soares, G E</creatorcontrib><creatorcontrib>Borges, H E</creatorcontrib><creatorcontrib>Gomes, R M</creatorcontrib><creatorcontrib>Oliveira, G M C</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soares, G E</au><au>Borges, H E</au><au>Gomes, R M</au><au>Oliveira, G M C</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Emergence of Neuronal Groups on a Self-Organized Spiking Neurons Network Based on Genetic Algorithm</atitle><btitle>2010 Eleventh Brazilian Symposium on Neural Networks</btitle><stitle>sbrn</stitle><date>2010-10</date><risdate>2010</risdate><spage>43</spage><epage>48</epage><pages>43-48</pages><issn>1522-4899</issn><eissn>2375-0235</eissn><isbn>1424483913</isbn><isbn>9781424483914</isbn><eisbn>9780769542102</eisbn><eisbn>0769542107</eisbn><abstract>Based on the Theory of Neuronal Group Selection (TNGS), proposed by Edelman, a network composed of one hundred Izhikevich spiking neurons is analyzed. In this study, a genetic algorithm is used to estimate the Izhikevich neuron model parameters in order to enable the self-organization of a neural network into a cluster of tightly coupled neural cells which fire and oscillate in synchrony at a predefined frequency.</abstract><pub>IEEE</pub><doi>10.1109/SBRN.2010.16</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4899
ispartof 2010 Eleventh Brazilian Symposium on Neural Networks, 2010, p.43-48
issn 1522-4899
2375-0235
language eng
recordid cdi_ieee_primary_5715211
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biological system modeling
Computational modeling
Frequency synchronization
genetic algorithm
Mathematical model
neural networks
Neurons
spiking neuron
Wave functions
title Emergence of Neuronal Groups on a Self-Organized Spiking Neurons Network Based on Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Emergence%20of%20Neuronal%20Groups%20on%20a%20Self-Organized%20Spiking%20Neurons%20Network%20Based%20on%20Genetic%20Algorithm&rft.btitle=2010%20Eleventh%20Brazilian%20Symposium%20on%20Neural%20Networks&rft.au=Soares,%20G%20E&rft.date=2010-10&rft.spage=43&rft.epage=48&rft.pages=43-48&rft.issn=1522-4899&rft.eissn=2375-0235&rft.isbn=1424483913&rft.isbn_list=9781424483914&rft_id=info:doi/10.1109/SBRN.2010.16&rft_dat=%3Cieee_6IE%3E5715211%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542102&rft.eisbn_list=0769542107&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5715211&rfr_iscdi=true