A Parallel Refined Jacobi-Davidson Method for Quadratic Eigenvalue Problems

This paper presents a parallel refined Jacobi-Davidson method for computing extreme eigenpairs of quadratic eigenvalue problems. The method directly computes the refined Ritz pairs in the projection subspace, and expands the subspace by the solution of the correction equation. Combining with the res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Shunxu Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue
container_start_page 111
container_title
container_volume
creator Shunxu Wang
description This paper presents a parallel refined Jacobi-Davidson method for computing extreme eigenpairs of quadratic eigenvalue problems. The method directly computes the refined Ritz pairs in the projection subspace, and expands the subspace by the solution of the correction equation. Combining with the restarting scheme, the method can solve several eigenpairs of quadratic eigenvalue problems. The numerical experiments on a parallel computer show that the parallel refined Jacobi-Davidson method for computing quadratic eigenvalue problems is very effective.
doi_str_mv 10.1109/PAAP.2010.62
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5715071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5715071</ieee_id><sourcerecordid>5715071</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-557a9a7e4485d37e6575d38b7aea6081c89fd4f980379236d26f2fa25775b5fd3</originalsourceid><addsrcrecordid>eNotjMtOwkAUQCdREgHZuXMzP1Cc92PZIOIDYzXsyW3njo4p1EwLiX8vRlcnJzk5hFxxNuec-ZuqLKu5YCc14oxMuBJKeeWEOSdjwY0rJJNqRCa_iZfWen1BZn3_yRiT3Hln2Jg8lbSCDG2LLX3DmPYY6CM0XZ2KWzim0Hd7-ozDRxdo7DJ9PUDIMKSGLtM77o_QHpBWuatb3PWXZBSh7XH2zynZ3C03i_ti_bJ6WJTrInk2FFpb8GBRKaeDtGi0PdHVFhAMc7xxPgYVvWPSeiFNECaKCEJbq2sdg5yS679tQsTtV047yN9bbblmlssf4m9NRQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Parallel Refined Jacobi-Davidson Method for Quadratic Eigenvalue Problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shunxu Wang</creator><creatorcontrib>Shunxu Wang</creatorcontrib><description>This paper presents a parallel refined Jacobi-Davidson method for computing extreme eigenpairs of quadratic eigenvalue problems. The method directly computes the refined Ritz pairs in the projection subspace, and expands the subspace by the solution of the correction equation. Combining with the restarting scheme, the method can solve several eigenpairs of quadratic eigenvalue problems. The numerical experiments on a parallel computer show that the parallel refined Jacobi-Davidson method for computing quadratic eigenvalue problems is very effective.</description><identifier>ISSN: 2168-3034</identifier><identifier>ISBN: 1424494826</identifier><identifier>ISBN: 9781424494828</identifier><identifier>DOI: 10.1109/PAAP.2010.62</identifier><identifier>LCCN: 2010937795</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Eigenvalues and eigenfunctions ; Equations ; Integrated circuits ; Jacobi-Davidson method ; Jacobian matrices ; Matrix decomposition ; Parallel algorithm ; Parallel processing ; Quadratic eigenvalue problems ; Refined method</subject><ispartof>2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming, 2010, p.111-115</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5715071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5715071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shunxu Wang</creatorcontrib><title>A Parallel Refined Jacobi-Davidson Method for Quadratic Eigenvalue Problems</title><title>2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming</title><addtitle>paap</addtitle><description>This paper presents a parallel refined Jacobi-Davidson method for computing extreme eigenpairs of quadratic eigenvalue problems. The method directly computes the refined Ritz pairs in the projection subspace, and expands the subspace by the solution of the correction equation. Combining with the restarting scheme, the method can solve several eigenpairs of quadratic eigenvalue problems. The numerical experiments on a parallel computer show that the parallel refined Jacobi-Davidson method for computing quadratic eigenvalue problems is very effective.</description><subject>Approximation methods</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equations</subject><subject>Integrated circuits</subject><subject>Jacobi-Davidson method</subject><subject>Jacobian matrices</subject><subject>Matrix decomposition</subject><subject>Parallel algorithm</subject><subject>Parallel processing</subject><subject>Quadratic eigenvalue problems</subject><subject>Refined method</subject><issn>2168-3034</issn><isbn>1424494826</isbn><isbn>9781424494828</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwkAUQCdREgHZuXMzP1Cc92PZIOIDYzXsyW3njo4p1EwLiX8vRlcnJzk5hFxxNuec-ZuqLKu5YCc14oxMuBJKeeWEOSdjwY0rJJNqRCa_iZfWen1BZn3_yRiT3Hln2Jg8lbSCDG2LLX3DmPYY6CM0XZ2KWzim0Hd7-ozDRxdo7DJ9PUDIMKSGLtM77o_QHpBWuatb3PWXZBSh7XH2zynZ3C03i_ti_bJ6WJTrInk2FFpb8GBRKaeDtGi0PdHVFhAMc7xxPgYVvWPSeiFNECaKCEJbq2sdg5yS679tQsTtV047yN9bbblmlssf4m9NRQ</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Shunxu Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>A Parallel Refined Jacobi-Davidson Method for Quadratic Eigenvalue Problems</title><author>Shunxu Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-557a9a7e4485d37e6575d38b7aea6081c89fd4f980379236d26f2fa25775b5fd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation methods</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equations</topic><topic>Integrated circuits</topic><topic>Jacobi-Davidson method</topic><topic>Jacobian matrices</topic><topic>Matrix decomposition</topic><topic>Parallel algorithm</topic><topic>Parallel processing</topic><topic>Quadratic eigenvalue problems</topic><topic>Refined method</topic><toplevel>online_resources</toplevel><creatorcontrib>Shunxu Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shunxu Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Parallel Refined Jacobi-Davidson Method for Quadratic Eigenvalue Problems</atitle><btitle>2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming</btitle><stitle>paap</stitle><date>2010-12</date><risdate>2010</risdate><spage>111</spage><epage>115</epage><pages>111-115</pages><issn>2168-3034</issn><isbn>1424494826</isbn><isbn>9781424494828</isbn><abstract>This paper presents a parallel refined Jacobi-Davidson method for computing extreme eigenpairs of quadratic eigenvalue problems. The method directly computes the refined Ritz pairs in the projection subspace, and expands the subspace by the solution of the correction equation. Combining with the restarting scheme, the method can solve several eigenpairs of quadratic eigenvalue problems. The numerical experiments on a parallel computer show that the parallel refined Jacobi-Davidson method for computing quadratic eigenvalue problems is very effective.</abstract><pub>IEEE</pub><doi>10.1109/PAAP.2010.62</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-3034
ispartof 2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming, 2010, p.111-115
issn 2168-3034
language eng
recordid cdi_ieee_primary_5715071
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Eigenvalues and eigenfunctions
Equations
Integrated circuits
Jacobi-Davidson method
Jacobian matrices
Matrix decomposition
Parallel algorithm
Parallel processing
Quadratic eigenvalue problems
Refined method
title A Parallel Refined Jacobi-Davidson Method for Quadratic Eigenvalue Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Parallel%20Refined%20Jacobi-Davidson%20Method%20for%20Quadratic%20Eigenvalue%20Problems&rft.btitle=2010%203rd%20International%20Symposium%20on%20Parallel%20Architectures,%20Algorithms%20and%20Programming&rft.au=Shunxu%20Wang&rft.date=2010-12&rft.spage=111&rft.epage=115&rft.pages=111-115&rft.issn=2168-3034&rft.isbn=1424494826&rft.isbn_list=9781424494828&rft_id=info:doi/10.1109/PAAP.2010.62&rft_dat=%3Cieee_6IE%3E5715071%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5715071&rfr_iscdi=true