A Scheduling Strategy on Load Balancing of Virtual Machine Resources in Cloud Computing Environment
The current virtual machine(VM) resources scheduling in cloud computing environment mainly considers the current state of the system but seldom considers system variation and historical data, which always leads to load imbalance of the system. In view of the load balancing problem in VM resources sc...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | |
container_start_page | 89 |
container_title | |
container_volume | |
creator | Jinhua Hu Jianhua Gu Guofei Sun Tianhai Zhao |
description | The current virtual machine(VM) resources scheduling in cloud computing environment mainly considers the current state of the system but seldom considers system variation and historical data, which always leads to load imbalance of the system. In view of the load balancing problem in VM resources scheduling, this paper presents a scheduling strategy on load balancing of VM resources based on genetic algorithm. According to historical data and current state of the system and through genetic algorithm, this strategy computes ahead the influence it will have on the system after the deployment of the needed VM resources and then chooses the least-affective solution, through which it achieves the best load balancing and reduces or avoids dynamic migration. This strategy solves the problem of load imbalance and high migration cost by traditional algorithms after scheduling. Experimental results prove that this method is able to realize load balancing and reasonable resources utilization both when system load is stable and variant. |
doi_str_mv | 10.1109/PAAP.2010.65 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5715067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5715067</ieee_id><sourcerecordid>5715067</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e0c0ebf3d7bdf362b1732336c9947dcb38d456bb4cf8a23f2bd8c932045d019d3</originalsourceid><addsrcrecordid>eNotjMtKAzEYRgNasK3duXOTF5ia5M_kshyHeoERiy1uSybJtJFpUuYi9O216OrjcA4fQneULCkl-mFdFOslI78o8is0o5xxrrli4hpNGRUqAwJ8gmaXRIOUOr9Bi77_IoQAVVoJMkW2wBt78G5sQ9zjzdCZwe_POEVcJePwo2lNtBeVGvwZumE0LX4z9hCixx--T2NnfY9DxGWbRofLdDyNw6Vfxe_QpXj0cbhFk8a0vV_87xxtn1bb8iWr3p9fy6LKgiZD5oklvm7Aydo1IFhNJTAAYbXm0tkalOO5qGtuG2UYNKx2ympghOeOUO1gju7_boP3fnfqwtF0510uaU6EhB8yy1cU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Scheduling Strategy on Load Balancing of Virtual Machine Resources in Cloud Computing Environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jinhua Hu ; Jianhua Gu ; Guofei Sun ; Tianhai Zhao</creator><creatorcontrib>Jinhua Hu ; Jianhua Gu ; Guofei Sun ; Tianhai Zhao</creatorcontrib><description>The current virtual machine(VM) resources scheduling in cloud computing environment mainly considers the current state of the system but seldom considers system variation and historical data, which always leads to load imbalance of the system. In view of the load balancing problem in VM resources scheduling, this paper presents a scheduling strategy on load balancing of VM resources based on genetic algorithm. According to historical data and current state of the system and through genetic algorithm, this strategy computes ahead the influence it will have on the system after the deployment of the needed VM resources and then chooses the least-affective solution, through which it achieves the best load balancing and reduces or avoids dynamic migration. This strategy solves the problem of load imbalance and high migration cost by traditional algorithms after scheduling. Experimental results prove that this method is able to realize load balancing and reasonable resources utilization both when system load is stable and variant.</description><identifier>ISSN: 2168-3034</identifier><identifier>ISBN: 1424494826</identifier><identifier>ISBN: 9781424494828</identifier><identifier>DOI: 10.1109/PAAP.2010.65</identifier><identifier>LCCN: 2010937795</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Dynamic scheduling ; Encoding ; genetic algorithm ; Heuristic algorithms ; load balancing ; Load management ; Processor scheduling ; scheduling strategy ; virtual machine resources</subject><ispartof>2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming, 2010, p.89-96</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5715067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5715067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jinhua Hu</creatorcontrib><creatorcontrib>Jianhua Gu</creatorcontrib><creatorcontrib>Guofei Sun</creatorcontrib><creatorcontrib>Tianhai Zhao</creatorcontrib><title>A Scheduling Strategy on Load Balancing of Virtual Machine Resources in Cloud Computing Environment</title><title>2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming</title><addtitle>paap</addtitle><description>The current virtual machine(VM) resources scheduling in cloud computing environment mainly considers the current state of the system but seldom considers system variation and historical data, which always leads to load imbalance of the system. In view of the load balancing problem in VM resources scheduling, this paper presents a scheduling strategy on load balancing of VM resources based on genetic algorithm. According to historical data and current state of the system and through genetic algorithm, this strategy computes ahead the influence it will have on the system after the deployment of the needed VM resources and then chooses the least-affective solution, through which it achieves the best load balancing and reduces or avoids dynamic migration. This strategy solves the problem of load imbalance and high migration cost by traditional algorithms after scheduling. Experimental results prove that this method is able to realize load balancing and reasonable resources utilization both when system load is stable and variant.</description><subject>Cloud computing</subject><subject>Dynamic scheduling</subject><subject>Encoding</subject><subject>genetic algorithm</subject><subject>Heuristic algorithms</subject><subject>load balancing</subject><subject>Load management</subject><subject>Processor scheduling</subject><subject>scheduling strategy</subject><subject>virtual machine resources</subject><issn>2168-3034</issn><isbn>1424494826</isbn><isbn>9781424494828</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKAzEYRgNasK3duXOTF5ia5M_kshyHeoERiy1uSybJtJFpUuYi9O216OrjcA4fQneULCkl-mFdFOslI78o8is0o5xxrrli4hpNGRUqAwJ8gmaXRIOUOr9Bi77_IoQAVVoJMkW2wBt78G5sQ9zjzdCZwe_POEVcJePwo2lNtBeVGvwZumE0LX4z9hCixx--T2NnfY9DxGWbRofLdDyNw6Vfxe_QpXj0cbhFk8a0vV_87xxtn1bb8iWr3p9fy6LKgiZD5oklvm7Aydo1IFhNJTAAYbXm0tkalOO5qGtuG2UYNKx2ympghOeOUO1gju7_boP3fnfqwtF0510uaU6EhB8yy1cU</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Jinhua Hu</creator><creator>Jianhua Gu</creator><creator>Guofei Sun</creator><creator>Tianhai Zhao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>A Scheduling Strategy on Load Balancing of Virtual Machine Resources in Cloud Computing Environment</title><author>Jinhua Hu ; Jianhua Gu ; Guofei Sun ; Tianhai Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e0c0ebf3d7bdf362b1732336c9947dcb38d456bb4cf8a23f2bd8c932045d019d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cloud computing</topic><topic>Dynamic scheduling</topic><topic>Encoding</topic><topic>genetic algorithm</topic><topic>Heuristic algorithms</topic><topic>load balancing</topic><topic>Load management</topic><topic>Processor scheduling</topic><topic>scheduling strategy</topic><topic>virtual machine resources</topic><toplevel>online_resources</toplevel><creatorcontrib>Jinhua Hu</creatorcontrib><creatorcontrib>Jianhua Gu</creatorcontrib><creatorcontrib>Guofei Sun</creatorcontrib><creatorcontrib>Tianhai Zhao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jinhua Hu</au><au>Jianhua Gu</au><au>Guofei Sun</au><au>Tianhai Zhao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Scheduling Strategy on Load Balancing of Virtual Machine Resources in Cloud Computing Environment</atitle><btitle>2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming</btitle><stitle>paap</stitle><date>2010-12</date><risdate>2010</risdate><spage>89</spage><epage>96</epage><pages>89-96</pages><issn>2168-3034</issn><isbn>1424494826</isbn><isbn>9781424494828</isbn><abstract>The current virtual machine(VM) resources scheduling in cloud computing environment mainly considers the current state of the system but seldom considers system variation and historical data, which always leads to load imbalance of the system. In view of the load balancing problem in VM resources scheduling, this paper presents a scheduling strategy on load balancing of VM resources based on genetic algorithm. According to historical data and current state of the system and through genetic algorithm, this strategy computes ahead the influence it will have on the system after the deployment of the needed VM resources and then chooses the least-affective solution, through which it achieves the best load balancing and reduces or avoids dynamic migration. This strategy solves the problem of load imbalance and high migration cost by traditional algorithms after scheduling. Experimental results prove that this method is able to realize load balancing and reasonable resources utilization both when system load is stable and variant.</abstract><pub>IEEE</pub><doi>10.1109/PAAP.2010.65</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-3034 |
ispartof | 2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming, 2010, p.89-96 |
issn | 2168-3034 |
language | eng |
recordid | cdi_ieee_primary_5715067 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cloud computing Dynamic scheduling Encoding genetic algorithm Heuristic algorithms load balancing Load management Processor scheduling scheduling strategy virtual machine resources |
title | A Scheduling Strategy on Load Balancing of Virtual Machine Resources in Cloud Computing Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Scheduling%20Strategy%20on%20Load%20Balancing%20of%20Virtual%20Machine%20Resources%20in%20Cloud%20Computing%20Environment&rft.btitle=2010%203rd%20International%20Symposium%20on%20Parallel%20Architectures,%20Algorithms%20and%20Programming&rft.au=Jinhua%20Hu&rft.date=2010-12&rft.spage=89&rft.epage=96&rft.pages=89-96&rft.issn=2168-3034&rft.isbn=1424494826&rft.isbn_list=9781424494828&rft_id=info:doi/10.1109/PAAP.2010.65&rft_dat=%3Cieee_6IE%3E5715067%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5715067&rfr_iscdi=true |