Light-Powered Micromotor: Design, Fabrication, and Mathematical Modeling

This paper reports on the experimental and theoretical studies of a light-driven micromotor, which is a "light mill" that rotates by absorbing photon energy. This light mill has four curved blades to form an axially asymmetric geometry. Upon lateral irradiation, the shape of the light mill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2011-04, Vol.20 (2), p.487-496
Hauptverfasser: Li-Hsin Han, Shaomin Wu, Condit, J C, Kemp, N J, Milner, T E, Feldman, M D, Shaochen Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports on the experimental and theoretical studies of a light-driven micromotor, which is a "light mill" that rotates by absorbing photon energy. This light mill has four curved blades to form an axially asymmetric geometry. Upon lateral irradiation, the shape of the light mill induces an asymmetric photon heating to the surrounding gas molecules, leading to a gas convection that forces the light mill to rotate. The light mill was applied to actuate a scanning mirror for a laser beam. Using a Direct Simulation Monte Carlo (DSMC) model, we investigated the working principle behind the operation of the light mill. The DSMC simulation yielded results consistent to our experimental data. The simulation results were used to explain the heat-induced light-mill rotation, in which the mean free path of the surrounding gas takes an important role.
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2011.2105249