A parallel region based object recognition system
Object recognition is a key problem in the field of computer vision. However, highly accurate object recognition systems are also computationally intensive, which limits their applicability. In this paper, we focus on a state-of-the-art object recognition system. We identify key computations of the...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | |
container_start_page | 81 |
container_title | |
container_volume | |
creator | Bor-Yiing Su Brutch, T G Keutzer, K |
description | Object recognition is a key problem in the field of computer vision. However, highly accurate object recognition systems are also computationally intensive, which limits their applicability. In this paper, we focus on a state-of-the-art object recognition system. We identify key computations of the system, examine efficient algorithms for parallelizing key computations, and develop a parallel object recognition system. The time taken by the training procedure on 127 images, with an average size of 0.15 M pixels, is reduced from 2332 seconds to 20 seconds. Similarly, the classification time of one 0.15 M pixel image is reduced from 331 seconds to 2.78 seconds. This efficient implementation of the object recognition system now makes it practical to train hundreds of images within minutes, and makes it possible to analyze image databases with hundreds or thousands of images in minutes, which was previously not possible. |
doi_str_mv | 10.1109/WACV.2011.5711487 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5711487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5711487</ieee_id><sourcerecordid>5711487</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a58d250eb201d0d3969c0771c6f8901ac655c370c1b3ccb58abdb51b886f76633</originalsourceid><addsrcrecordid>eNpFj81qwzAQhNU_qJP2AUovfgG7u5ZW0h6DadpCoJfQHoMky8HBiYPlS96-KQ30NDAffMwI8YRQIgK_fC_qr7ICxJIMorLmSsxQVUqxYrLXIqu0qgqWFm_-gda3IkMiKMgw3ItZSjsAycgyE7jIj250fR_7fIzbbjjk3qXY5IPfxTCduzBsD930C9IpTXH_IO5a16f4eMm5WC9f1_V7sfp8-6gXq6JjmApHtqkIoj-vbaCRrDmAMRh0axnQBU0UpIGAXobgyTrfeEJvrW6N1lLOxfOftosxbo5jt3fjaXO5LX8AMxpG6w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A parallel region based object recognition system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bor-Yiing Su ; Brutch, T G ; Keutzer, K</creator><creatorcontrib>Bor-Yiing Su ; Brutch, T G ; Keutzer, K</creatorcontrib><description>Object recognition is a key problem in the field of computer vision. However, highly accurate object recognition systems are also computationally intensive, which limits their applicability. In this paper, we focus on a state-of-the-art object recognition system. We identify key computations of the system, examine efficient algorithms for parallelizing key computations, and develop a parallel object recognition system. The time taken by the training procedure on 127 images, with an average size of 0.15 M pixels, is reduced from 2332 seconds to 20 seconds. Similarly, the classification time of one 0.15 M pixel image is reduced from 331 seconds to 2.78 seconds. This efficient implementation of the object recognition system now makes it practical to train hundreds of images within minutes, and makes it possible to analyze image databases with hundreds or thousands of images in minutes, which was previously not possible.</description><identifier>ISSN: 1550-5790</identifier><identifier>ISBN: 1424494966</identifier><identifier>ISBN: 9781424494965</identifier><identifier>EISSN: 2642-9381</identifier><identifier>EISBN: 1424494958</identifier><identifier>EISBN: 9781424494958</identifier><identifier>EISBN: 9781424494972</identifier><identifier>EISBN: 1424494974</identifier><identifier>DOI: 10.1109/WACV.2011.5711487</identifier><language>eng</language><publisher>IEEE</publisher><subject>Graphics processing unit ; Image segmentation ; Multicore processing ; Object recognition ; Parallel processing ; Partitioning algorithms ; Pixel</subject><ispartof>2011 IEEE Workshop on Applications of Computer Vision (WACV), 2011, p.81-88</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5711487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5711487$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bor-Yiing Su</creatorcontrib><creatorcontrib>Brutch, T G</creatorcontrib><creatorcontrib>Keutzer, K</creatorcontrib><title>A parallel region based object recognition system</title><title>2011 IEEE Workshop on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>Object recognition is a key problem in the field of computer vision. However, highly accurate object recognition systems are also computationally intensive, which limits their applicability. In this paper, we focus on a state-of-the-art object recognition system. We identify key computations of the system, examine efficient algorithms for parallelizing key computations, and develop a parallel object recognition system. The time taken by the training procedure on 127 images, with an average size of 0.15 M pixels, is reduced from 2332 seconds to 20 seconds. Similarly, the classification time of one 0.15 M pixel image is reduced from 331 seconds to 2.78 seconds. This efficient implementation of the object recognition system now makes it practical to train hundreds of images within minutes, and makes it possible to analyze image databases with hundreds or thousands of images in minutes, which was previously not possible.</description><subject>Graphics processing unit</subject><subject>Image segmentation</subject><subject>Multicore processing</subject><subject>Object recognition</subject><subject>Parallel processing</subject><subject>Partitioning algorithms</subject><subject>Pixel</subject><issn>1550-5790</issn><issn>2642-9381</issn><isbn>1424494966</isbn><isbn>9781424494965</isbn><isbn>1424494958</isbn><isbn>9781424494958</isbn><isbn>9781424494972</isbn><isbn>1424494974</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81qwzAQhNU_qJP2AUovfgG7u5ZW0h6DadpCoJfQHoMky8HBiYPlS96-KQ30NDAffMwI8YRQIgK_fC_qr7ICxJIMorLmSsxQVUqxYrLXIqu0qgqWFm_-gda3IkMiKMgw3ItZSjsAycgyE7jIj250fR_7fIzbbjjk3qXY5IPfxTCduzBsD930C9IpTXH_IO5a16f4eMm5WC9f1_V7sfp8-6gXq6JjmApHtqkIoj-vbaCRrDmAMRh0axnQBU0UpIGAXobgyTrfeEJvrW6N1lLOxfOftosxbo5jt3fjaXO5LX8AMxpG6w</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Bor-Yiing Su</creator><creator>Brutch, T G</creator><creator>Keutzer, K</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201101</creationdate><title>A parallel region based object recognition system</title><author>Bor-Yiing Su ; Brutch, T G ; Keutzer, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a58d250eb201d0d3969c0771c6f8901ac655c370c1b3ccb58abdb51b886f76633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Graphics processing unit</topic><topic>Image segmentation</topic><topic>Multicore processing</topic><topic>Object recognition</topic><topic>Parallel processing</topic><topic>Partitioning algorithms</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Bor-Yiing Su</creatorcontrib><creatorcontrib>Brutch, T G</creatorcontrib><creatorcontrib>Keutzer, K</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bor-Yiing Su</au><au>Brutch, T G</au><au>Keutzer, K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A parallel region based object recognition system</atitle><btitle>2011 IEEE Workshop on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2011-01</date><risdate>2011</risdate><spage>81</spage><epage>88</epage><pages>81-88</pages><issn>1550-5790</issn><eissn>2642-9381</eissn><isbn>1424494966</isbn><isbn>9781424494965</isbn><eisbn>1424494958</eisbn><eisbn>9781424494958</eisbn><eisbn>9781424494972</eisbn><eisbn>1424494974</eisbn><abstract>Object recognition is a key problem in the field of computer vision. However, highly accurate object recognition systems are also computationally intensive, which limits their applicability. In this paper, we focus on a state-of-the-art object recognition system. We identify key computations of the system, examine efficient algorithms for parallelizing key computations, and develop a parallel object recognition system. The time taken by the training procedure on 127 images, with an average size of 0.15 M pixels, is reduced from 2332 seconds to 20 seconds. Similarly, the classification time of one 0.15 M pixel image is reduced from 331 seconds to 2.78 seconds. This efficient implementation of the object recognition system now makes it practical to train hundreds of images within minutes, and makes it possible to analyze image databases with hundreds or thousands of images in minutes, which was previously not possible.</abstract><pub>IEEE</pub><doi>10.1109/WACV.2011.5711487</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5790 |
ispartof | 2011 IEEE Workshop on Applications of Computer Vision (WACV), 2011, p.81-88 |
issn | 1550-5790 2642-9381 |
language | eng |
recordid | cdi_ieee_primary_5711487 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Graphics processing unit Image segmentation Multicore processing Object recognition Parallel processing Partitioning algorithms Pixel |
title | A parallel region based object recognition system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20parallel%20region%20based%20object%20recognition%20system&rft.btitle=2011%20IEEE%20Workshop%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Bor-Yiing%20Su&rft.date=2011-01&rft.spage=81&rft.epage=88&rft.pages=81-88&rft.issn=1550-5790&rft.eissn=2642-9381&rft.isbn=1424494966&rft.isbn_list=9781424494965&rft_id=info:doi/10.1109/WACV.2011.5711487&rft_dat=%3Cieee_6IE%3E5711487%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424494958&rft.eisbn_list=9781424494958&rft.eisbn_list=9781424494972&rft.eisbn_list=1424494974&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5711487&rfr_iscdi=true |