Applying feature selective validation (FSV) as an objective function for data optimization

Feature Select Validation (FSV) is a widely used validation method for data comparison. FSV provides a quantitative standard to describe the similarity between two sets of data. In this paper, the application of the FSV technique is extended to data optimization. The raw data obtained from simulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Siming Pan, Hanfeng Wang, Jun Fan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 721
container_issue
container_start_page 718
container_title
container_volume
creator Siming Pan
Hanfeng Wang
Jun Fan
description Feature Select Validation (FSV) is a widely used validation method for data comparison. FSV provides a quantitative standard to describe the similarity between two sets of data. In this paper, the application of the FSV technique is extended to data optimization. The raw data obtained from simulations or measurements are often non-ideal for further processing. Several techniques, such as data perturbation, can be used to improve the data quality in certain aspects. However, after modifications the new data could be very different to the original one. Using FSV as an objective function for the optimization process is discussed in this paper, in an example of causality enforcement, to ensure the enforced casual data has the minimum deviations from the original data. The results demonstrate that the proposed approach in this paper is effective for data modification and optimization.
doi_str_mv 10.1109/ISEMC.2010.5711366
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5711366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5711366</ieee_id><sourcerecordid>5711366</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-730e20a7b17d0287fc4cf657d5ce6a3c6540761cc1d77321b2a3e0844d3433013</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhtePgqXmD-hlj3pI3dnZ3UmPpbRaqHioingpm81GtqRJSNJC_fWWWgTfy_DyPDOHYewGxBBAjB7my-nzZCjFoWsCQGPOWDSiBJRUyqAgOmd9CTqJASC5-Mc0Xv4x8dFj_QRjo7RSoysWte1aHKIlIUCffY7rutiH8ovn3nbbxvPWF951Yef5zhYhs12oSn43W77fc9tyW_IqXZ-EfFu6I86rhh9My6u6C5vwfVy6Zr3cFq2PTnPA3mbT18lTvHh5nE_GizgA6S4mFF4KSylQJmRCuVMuN5oy7byx6IxWggw4BxkRSkilRS8SpTJUiAJwwG5_7wbv_apuwsY2-9Xpa_gDP3xZmg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying feature selective validation (FSV) as an objective function for data optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Siming Pan ; Hanfeng Wang ; Jun Fan</creator><creatorcontrib>Siming Pan ; Hanfeng Wang ; Jun Fan</creatorcontrib><description>Feature Select Validation (FSV) is a widely used validation method for data comparison. FSV provides a quantitative standard to describe the similarity between two sets of data. In this paper, the application of the FSV technique is extended to data optimization. The raw data obtained from simulations or measurements are often non-ideal for further processing. Several techniques, such as data perturbation, can be used to improve the data quality in certain aspects. However, after modifications the new data could be very different to the original one. Using FSV as an objective function for the optimization process is discussed in this paper, in an example of causality enforcement, to ensure the enforced casual data has the minimum deviations from the original data. The results demonstrate that the proposed approach in this paper is effective for data modification and optimization.</description><identifier>ISSN: 2158-110X</identifier><identifier>ISBN: 9781424463053</identifier><identifier>ISBN: 142446305X</identifier><identifier>EISSN: 2158-1118</identifier><identifier>EISBN: 9781424463077</identifier><identifier>EISBN: 1424463084</identifier><identifier>EISBN: 1424463076</identifier><identifier>EISBN: 9781424463084</identifier><identifier>DOI: 10.1109/ISEMC.2010.5711366</identifier><identifier>LCCN: 83-645449</identifier><language>eng</language><publisher>IEEE</publisher><subject>causality check ; causality enforcement ; data optimization ; data perturbation ; Feature selective validation (FSV) ; Gallium ; Interpolation ; Numerical models ; Optimization ; Polynomials ; Scattering parameters ; Transforms</subject><ispartof>2010 IEEE International Symposium on Electromagnetic Compatibility, 2010, p.718-721</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5711366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5711366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siming Pan</creatorcontrib><creatorcontrib>Hanfeng Wang</creatorcontrib><creatorcontrib>Jun Fan</creatorcontrib><title>Applying feature selective validation (FSV) as an objective function for data optimization</title><title>2010 IEEE International Symposium on Electromagnetic Compatibility</title><addtitle>ISEMC</addtitle><description>Feature Select Validation (FSV) is a widely used validation method for data comparison. FSV provides a quantitative standard to describe the similarity between two sets of data. In this paper, the application of the FSV technique is extended to data optimization. The raw data obtained from simulations or measurements are often non-ideal for further processing. Several techniques, such as data perturbation, can be used to improve the data quality in certain aspects. However, after modifications the new data could be very different to the original one. Using FSV as an objective function for the optimization process is discussed in this paper, in an example of causality enforcement, to ensure the enforced casual data has the minimum deviations from the original data. The results demonstrate that the proposed approach in this paper is effective for data modification and optimization.</description><subject>causality check</subject><subject>causality enforcement</subject><subject>data optimization</subject><subject>data perturbation</subject><subject>Feature selective validation (FSV)</subject><subject>Gallium</subject><subject>Interpolation</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Scattering parameters</subject><subject>Transforms</subject><issn>2158-110X</issn><issn>2158-1118</issn><isbn>9781424463053</isbn><isbn>142446305X</isbn><isbn>9781424463077</isbn><isbn>1424463084</isbn><isbn>1424463076</isbn><isbn>9781424463084</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1Lw0AQhtePgqXmD-hlj3pI3dnZ3UmPpbRaqHioingpm81GtqRJSNJC_fWWWgTfy_DyPDOHYewGxBBAjB7my-nzZCjFoWsCQGPOWDSiBJRUyqAgOmd9CTqJASC5-Mc0Xv4x8dFj_QRjo7RSoysWte1aHKIlIUCffY7rutiH8ovn3nbbxvPWF951Yef5zhYhs12oSn43W77fc9tyW_IqXZ-EfFu6I86rhh9My6u6C5vwfVy6Zr3cFq2PTnPA3mbT18lTvHh5nE_GizgA6S4mFF4KSylQJmRCuVMuN5oy7byx6IxWggw4BxkRSkilRS8SpTJUiAJwwG5_7wbv_apuwsY2-9Xpa_gDP3xZmg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Siming Pan</creator><creator>Hanfeng Wang</creator><creator>Jun Fan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>Applying feature selective validation (FSV) as an objective function for data optimization</title><author>Siming Pan ; Hanfeng Wang ; Jun Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-730e20a7b17d0287fc4cf657d5ce6a3c6540761cc1d77321b2a3e0844d3433013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>causality check</topic><topic>causality enforcement</topic><topic>data optimization</topic><topic>data perturbation</topic><topic>Feature selective validation (FSV)</topic><topic>Gallium</topic><topic>Interpolation</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Scattering parameters</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Siming Pan</creatorcontrib><creatorcontrib>Hanfeng Wang</creatorcontrib><creatorcontrib>Jun Fan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siming Pan</au><au>Hanfeng Wang</au><au>Jun Fan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying feature selective validation (FSV) as an objective function for data optimization</atitle><btitle>2010 IEEE International Symposium on Electromagnetic Compatibility</btitle><stitle>ISEMC</stitle><date>2010-07</date><risdate>2010</risdate><spage>718</spage><epage>721</epage><pages>718-721</pages><issn>2158-110X</issn><eissn>2158-1118</eissn><isbn>9781424463053</isbn><isbn>142446305X</isbn><eisbn>9781424463077</eisbn><eisbn>1424463084</eisbn><eisbn>1424463076</eisbn><eisbn>9781424463084</eisbn><abstract>Feature Select Validation (FSV) is a widely used validation method for data comparison. FSV provides a quantitative standard to describe the similarity between two sets of data. In this paper, the application of the FSV technique is extended to data optimization. The raw data obtained from simulations or measurements are often non-ideal for further processing. Several techniques, such as data perturbation, can be used to improve the data quality in certain aspects. However, after modifications the new data could be very different to the original one. Using FSV as an objective function for the optimization process is discussed in this paper, in an example of causality enforcement, to ensure the enforced casual data has the minimum deviations from the original data. The results demonstrate that the proposed approach in this paper is effective for data modification and optimization.</abstract><pub>IEEE</pub><doi>10.1109/ISEMC.2010.5711366</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-110X
ispartof 2010 IEEE International Symposium on Electromagnetic Compatibility, 2010, p.718-721
issn 2158-110X
2158-1118
language eng
recordid cdi_ieee_primary_5711366
source IEEE Electronic Library (IEL) Conference Proceedings
subjects causality check
causality enforcement
data optimization
data perturbation
Feature selective validation (FSV)
Gallium
Interpolation
Numerical models
Optimization
Polynomials
Scattering parameters
Transforms
title Applying feature selective validation (FSV) as an objective function for data optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20feature%20selective%20validation%20(FSV)%20as%20an%20objective%20function%20for%20data%20optimization&rft.btitle=2010%20IEEE%20International%20Symposium%20on%20Electromagnetic%20Compatibility&rft.au=Siming%20Pan&rft.date=2010-07&rft.spage=718&rft.epage=721&rft.pages=718-721&rft.issn=2158-110X&rft.eissn=2158-1118&rft.isbn=9781424463053&rft.isbn_list=142446305X&rft_id=info:doi/10.1109/ISEMC.2010.5711366&rft_dat=%3Cieee_6IE%3E5711366%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424463077&rft.eisbn_list=1424463084&rft.eisbn_list=1424463076&rft.eisbn_list=9781424463084&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5711366&rfr_iscdi=true