Image Scrambling Degree Evaluation Algorithm Based on Grey Relation Analysis

In order to objectively and automatically evaluate the degree of digital image scrambling, introduce the grey relation analysis theory, the paper proposes a new evaluation method of image scrambling. In the method, the definition and the feature of the ideal scrambling image are analyzed first, whos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tan Yongjie, Zhou Wengang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue
container_start_page 511
container_title
container_volume
creator Tan Yongjie
Zhou Wengang
description In order to objectively and automatically evaluate the degree of digital image scrambling, introduce the grey relation analysis theory, the paper proposes a new evaluation method of image scrambling. In the method, the definition and the feature of the ideal scrambling image are analyzed first, whose histogram is summarized at the same time. And then, the scrambling image is divided into some sub-images to construct some histogram sequences, and make these sequences be small samples sequences. Finally the gray relevancy of every two sequences using gray relation analysis is calculated to evaluate the image scrambling degree. Two kinds of experimental results indicate that compared with the method based SNR, the proposed method is not only efficient, flexible, running without the origin image involved, but also can provide with some conclusions which are consistent with the perception of human visual system.
doi_str_mv 10.1109/ICCIS.2010.131
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5709136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5709136</ieee_id><sourcerecordid>5709136</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6b089c10895284e89a8908e1e164ab8797a43c158b638c1bb444455b6658805d3</originalsourceid><addsrcrecordid>eNotjE9Lw0AUxFdEUGuuXrzsF0jdl-yft8ca2xoICLb3sps-40qSyiYK-fZG7O8wwwzDMHYPYgkg7GNZFOVumYm_nMMFS6xBYbRVMjNCX7JbkJmUiCDhmiXD8ClmVGak1jesKjvXEN_V0XW-DX3Dn6mJRHz949pvN4ZTz1dtc4ph_Oj4kxvoyOdqG2nib9SeB71rpyEMd-zq3bUDJWdfsP1mvS9e0up1WxarKg1WjKn2Am0Ns6gMJaF1aAUSEGjpPBprnMxrUOh1jjV4L2eU8lorRKGO-YI9_N8GIjp8xdC5OB2UERZynf8CSLZMCw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image Scrambling Degree Evaluation Algorithm Based on Grey Relation Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tan Yongjie ; Zhou Wengang</creator><creatorcontrib>Tan Yongjie ; Zhou Wengang</creatorcontrib><description>In order to objectively and automatically evaluate the degree of digital image scrambling, introduce the grey relation analysis theory, the paper proposes a new evaluation method of image scrambling. In the method, the definition and the feature of the ideal scrambling image are analyzed first, whose histogram is summarized at the same time. And then, the scrambling image is divided into some sub-images to construct some histogram sequences, and make these sequences be small samples sequences. Finally the gray relevancy of every two sequences using gray relation analysis is calculated to evaluate the image scrambling degree. Two kinds of experimental results indicate that compared with the method based SNR, the proposed method is not only efficient, flexible, running without the origin image involved, but also can provide with some conclusions which are consistent with the perception of human visual system.</description><identifier>ISBN: 1424488141</identifier><identifier>ISBN: 9781424488148</identifier><identifier>EISBN: 9780769542706</identifier><identifier>EISBN: 0769542700</identifier><identifier>DOI: 10.1109/ICCIS.2010.131</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Correlation ; Grey Relation Analysis(GRA) ; histogram ; Histograms ; Humans ; image scrambling ; Pixel ; scrambling degree ; Signal to noise ratio ; Signal-to-Noise Ratio (SNR) ; Transforms</subject><ispartof>2010 International Conference on Computational and Information Sciences, 2010, p.511-514</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5709136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5709136$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan Yongjie</creatorcontrib><creatorcontrib>Zhou Wengang</creatorcontrib><title>Image Scrambling Degree Evaluation Algorithm Based on Grey Relation Analysis</title><title>2010 International Conference on Computational and Information Sciences</title><addtitle>ICCIS</addtitle><description>In order to objectively and automatically evaluate the degree of digital image scrambling, introduce the grey relation analysis theory, the paper proposes a new evaluation method of image scrambling. In the method, the definition and the feature of the ideal scrambling image are analyzed first, whose histogram is summarized at the same time. And then, the scrambling image is divided into some sub-images to construct some histogram sequences, and make these sequences be small samples sequences. Finally the gray relevancy of every two sequences using gray relation analysis is calculated to evaluate the image scrambling degree. Two kinds of experimental results indicate that compared with the method based SNR, the proposed method is not only efficient, flexible, running without the origin image involved, but also can provide with some conclusions which are consistent with the perception of human visual system.</description><subject>Algorithm design and analysis</subject><subject>Correlation</subject><subject>Grey Relation Analysis(GRA)</subject><subject>histogram</subject><subject>Histograms</subject><subject>Humans</subject><subject>image scrambling</subject><subject>Pixel</subject><subject>scrambling degree</subject><subject>Signal to noise ratio</subject><subject>Signal-to-Noise Ratio (SNR)</subject><subject>Transforms</subject><isbn>1424488141</isbn><isbn>9781424488148</isbn><isbn>9780769542706</isbn><isbn>0769542700</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE9Lw0AUxFdEUGuuXrzsF0jdl-yft8ca2xoICLb3sps-40qSyiYK-fZG7O8wwwzDMHYPYgkg7GNZFOVumYm_nMMFS6xBYbRVMjNCX7JbkJmUiCDhmiXD8ClmVGak1jesKjvXEN_V0XW-DX3Dn6mJRHz949pvN4ZTz1dtc4ph_Oj4kxvoyOdqG2nib9SeB71rpyEMd-zq3bUDJWdfsP1mvS9e0up1WxarKg1WjKn2Am0Ns6gMJaF1aAUSEGjpPBprnMxrUOh1jjV4L2eU8lorRKGO-YI9_N8GIjp8xdC5OB2UERZynf8CSLZMCw</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Tan Yongjie</creator><creator>Zhou Wengang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Image Scrambling Degree Evaluation Algorithm Based on Grey Relation Analysis</title><author>Tan Yongjie ; Zhou Wengang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6b089c10895284e89a8908e1e164ab8797a43c158b638c1bb444455b6658805d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Correlation</topic><topic>Grey Relation Analysis(GRA)</topic><topic>histogram</topic><topic>Histograms</topic><topic>Humans</topic><topic>image scrambling</topic><topic>Pixel</topic><topic>scrambling degree</topic><topic>Signal to noise ratio</topic><topic>Signal-to-Noise Ratio (SNR)</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Tan Yongjie</creatorcontrib><creatorcontrib>Zhou Wengang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan Yongjie</au><au>Zhou Wengang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image Scrambling Degree Evaluation Algorithm Based on Grey Relation Analysis</atitle><btitle>2010 International Conference on Computational and Information Sciences</btitle><stitle>ICCIS</stitle><date>2010-12</date><risdate>2010</risdate><spage>511</spage><epage>514</epage><pages>511-514</pages><isbn>1424488141</isbn><isbn>9781424488148</isbn><eisbn>9780769542706</eisbn><eisbn>0769542700</eisbn><abstract>In order to objectively and automatically evaluate the degree of digital image scrambling, introduce the grey relation analysis theory, the paper proposes a new evaluation method of image scrambling. In the method, the definition and the feature of the ideal scrambling image are analyzed first, whose histogram is summarized at the same time. And then, the scrambling image is divided into some sub-images to construct some histogram sequences, and make these sequences be small samples sequences. Finally the gray relevancy of every two sequences using gray relation analysis is calculated to evaluate the image scrambling degree. Two kinds of experimental results indicate that compared with the method based SNR, the proposed method is not only efficient, flexible, running without the origin image involved, but also can provide with some conclusions which are consistent with the perception of human visual system.</abstract><pub>IEEE</pub><doi>10.1109/ICCIS.2010.131</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424488141
ispartof 2010 International Conference on Computational and Information Sciences, 2010, p.511-514
issn
language eng
recordid cdi_ieee_primary_5709136
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Correlation
Grey Relation Analysis(GRA)
histogram
Histograms
Humans
image scrambling
Pixel
scrambling degree
Signal to noise ratio
Signal-to-Noise Ratio (SNR)
Transforms
title Image Scrambling Degree Evaluation Algorithm Based on Grey Relation Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20Scrambling%20Degree%20Evaluation%20Algorithm%20Based%20on%20Grey%20Relation%20Analysis&rft.btitle=2010%20International%20Conference%20on%20Computational%20and%20Information%20Sciences&rft.au=Tan%20Yongjie&rft.date=2010-12&rft.spage=511&rft.epage=514&rft.pages=511-514&rft.isbn=1424488141&rft.isbn_list=9781424488148&rft_id=info:doi/10.1109/ICCIS.2010.131&rft_dat=%3Cieee_6IE%3E5709136%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542706&rft.eisbn_list=0769542700&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5709136&rfr_iscdi=true