Performing Large Science Experiments on Azure: Pitfalls and Solutions
Carrying out science at extreme scale is the next generational challenge facing the broad field of scientific research. Cloud computing offers to potential for an increasing number of researchers to have ready access to the large scale compute resources required to tackle new challenges in their fie...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | |
container_start_page | 209 |
container_title | |
container_volume | |
creator | Wei Lu Jackson, J Ekanayake, J Barga, R S Araujo, N |
description | Carrying out science at extreme scale is the next generational challenge facing the broad field of scientific research. Cloud computing offers to potential for an increasing number of researchers to have ready access to the large scale compute resources required to tackle new challenges in their field. Unfortunately barriers of complexity remain for researchers untrained in cloud programming. In this paper we examine how cloud based architectures can be used to solve large scale research experiments in a manner that is easily accessible for researchers with limited programming experience, using their existing computational tools. We examine the top challenges identified in our own large-scale science experiments running on the Windows Azure platform and then describe a Cloud-based parameter sweep prototype (dubbed Cirrus) which provides a framework of solutions for each challenge. |
doi_str_mv | 10.1109/CloudCom.2010.104 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5708453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5708453</ieee_id><sourcerecordid>5708453</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1d38fe1b3d6c0da53e3d45238a99bd5908ffd0f32622e37cda7645b2135f86593</originalsourceid><addsrcrecordid>eNotjstKxDAYRiMiqGMfQNzkBWb8c2sSd0OpFyg4MLMf0ubPEOllaFpQn96Kns0HZ_FxCLlnsGEM7GPRDrMvhm7D4VeBvCCZ1QZ0bpUUwOUluWWSS2klKH5NspQ-YEFxra25IeUOxzCMXexPtHLjCem-idg3SMvPM46xw35KdOjp9nse8Ynu4hRc2ybqek_3QztPcejTHblabMLsf1fk8Fweitd19f7yVmyrdbQwrZkXJiCrhc8b8E4JFF4qLoyztvbKggnBQxA85xyFbrzTuVQ1Z0IFkysrVuTh7zYi4vG81Lnx66g0GKmE-AE26ky6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performing Large Science Experiments on Azure: Pitfalls and Solutions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wei Lu ; Jackson, J ; Ekanayake, J ; Barga, R S ; Araujo, N</creator><creatorcontrib>Wei Lu ; Jackson, J ; Ekanayake, J ; Barga, R S ; Araujo, N</creatorcontrib><description>Carrying out science at extreme scale is the next generational challenge facing the broad field of scientific research. Cloud computing offers to potential for an increasing number of researchers to have ready access to the large scale compute resources required to tackle new challenges in their field. Unfortunately barriers of complexity remain for researchers untrained in cloud programming. In this paper we examine how cloud based architectures can be used to solve large scale research experiments in a manner that is easily accessible for researchers with limited programming experience, using their existing computational tools. We examine the top challenges identified in our own large-scale science experiments running on the Windows Azure platform and then describe a Cloud-based parameter sweep prototype (dubbed Cirrus) which provides a framework of solutions for each challenge.</description><identifier>ISBN: 1424494052</identifier><identifier>ISBN: 9781424494057</identifier><identifier>EISBN: 9780769543024</identifier><identifier>EISBN: 0769543022</identifier><identifier>DOI: 10.1109/CloudCom.2010.104</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Clouds ; Complexity theory ; Fabrics ; Parameter ; Programming ; Proteins ; Windows Azure</subject><ispartof>2010 IEEE Second International Conference on Cloud Computing Technology and Science, 2010, p.209-217</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5708453$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5708453$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei Lu</creatorcontrib><creatorcontrib>Jackson, J</creatorcontrib><creatorcontrib>Ekanayake, J</creatorcontrib><creatorcontrib>Barga, R S</creatorcontrib><creatorcontrib>Araujo, N</creatorcontrib><title>Performing Large Science Experiments on Azure: Pitfalls and Solutions</title><title>2010 IEEE Second International Conference on Cloud Computing Technology and Science</title><addtitle>CLOUDCOM</addtitle><description>Carrying out science at extreme scale is the next generational challenge facing the broad field of scientific research. Cloud computing offers to potential for an increasing number of researchers to have ready access to the large scale compute resources required to tackle new challenges in their field. Unfortunately barriers of complexity remain for researchers untrained in cloud programming. In this paper we examine how cloud based architectures can be used to solve large scale research experiments in a manner that is easily accessible for researchers with limited programming experience, using their existing computational tools. We examine the top challenges identified in our own large-scale science experiments running on the Windows Azure platform and then describe a Cloud-based parameter sweep prototype (dubbed Cirrus) which provides a framework of solutions for each challenge.</description><subject>Cloud computing</subject><subject>Clouds</subject><subject>Complexity theory</subject><subject>Fabrics</subject><subject>Parameter</subject><subject>Programming</subject><subject>Proteins</subject><subject>Windows Azure</subject><isbn>1424494052</isbn><isbn>9781424494057</isbn><isbn>9780769543024</isbn><isbn>0769543022</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjstKxDAYRiMiqGMfQNzkBWb8c2sSd0OpFyg4MLMf0ubPEOllaFpQn96Kns0HZ_FxCLlnsGEM7GPRDrMvhm7D4VeBvCCZ1QZ0bpUUwOUluWWSS2klKH5NspQ-YEFxra25IeUOxzCMXexPtHLjCem-idg3SMvPM46xw35KdOjp9nse8Ynu4hRc2ybqek_3QztPcejTHblabMLsf1fk8Fweitd19f7yVmyrdbQwrZkXJiCrhc8b8E4JFF4qLoyztvbKggnBQxA85xyFbrzTuVQ1Z0IFkysrVuTh7zYi4vG81Lnx66g0GKmE-AE26ky6</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Wei Lu</creator><creator>Jackson, J</creator><creator>Ekanayake, J</creator><creator>Barga, R S</creator><creator>Araujo, N</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Performing Large Science Experiments on Azure: Pitfalls and Solutions</title><author>Wei Lu ; Jackson, J ; Ekanayake, J ; Barga, R S ; Araujo, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1d38fe1b3d6c0da53e3d45238a99bd5908ffd0f32622e37cda7645b2135f86593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cloud computing</topic><topic>Clouds</topic><topic>Complexity theory</topic><topic>Fabrics</topic><topic>Parameter</topic><topic>Programming</topic><topic>Proteins</topic><topic>Windows Azure</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei Lu</creatorcontrib><creatorcontrib>Jackson, J</creatorcontrib><creatorcontrib>Ekanayake, J</creatorcontrib><creatorcontrib>Barga, R S</creatorcontrib><creatorcontrib>Araujo, N</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Lu</au><au>Jackson, J</au><au>Ekanayake, J</au><au>Barga, R S</au><au>Araujo, N</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performing Large Science Experiments on Azure: Pitfalls and Solutions</atitle><btitle>2010 IEEE Second International Conference on Cloud Computing Technology and Science</btitle><stitle>CLOUDCOM</stitle><date>2010-11</date><risdate>2010</risdate><spage>209</spage><epage>217</epage><pages>209-217</pages><isbn>1424494052</isbn><isbn>9781424494057</isbn><eisbn>9780769543024</eisbn><eisbn>0769543022</eisbn><abstract>Carrying out science at extreme scale is the next generational challenge facing the broad field of scientific research. Cloud computing offers to potential for an increasing number of researchers to have ready access to the large scale compute resources required to tackle new challenges in their field. Unfortunately barriers of complexity remain for researchers untrained in cloud programming. In this paper we examine how cloud based architectures can be used to solve large scale research experiments in a manner that is easily accessible for researchers with limited programming experience, using their existing computational tools. We examine the top challenges identified in our own large-scale science experiments running on the Windows Azure platform and then describe a Cloud-based parameter sweep prototype (dubbed Cirrus) which provides a framework of solutions for each challenge.</abstract><pub>IEEE</pub><doi>10.1109/CloudCom.2010.104</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424494052 |
ispartof | 2010 IEEE Second International Conference on Cloud Computing Technology and Science, 2010, p.209-217 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5708453 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cloud computing Clouds Complexity theory Fabrics Parameter Programming Proteins Windows Azure |
title | Performing Large Science Experiments on Azure: Pitfalls and Solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performing%20Large%20Science%20Experiments%20on%20Azure:%20Pitfalls%20and%20Solutions&rft.btitle=2010%20IEEE%20Second%20International%20Conference%20on%20Cloud%20Computing%20Technology%20and%20Science&rft.au=Wei%20Lu&rft.date=2010-11&rft.spage=209&rft.epage=217&rft.pages=209-217&rft.isbn=1424494052&rft.isbn_list=9781424494057&rft_id=info:doi/10.1109/CloudCom.2010.104&rft_dat=%3Cieee_6IE%3E5708453%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769543024&rft.eisbn_list=0769543022&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5708453&rfr_iscdi=true |