Computational prediction of toxicity
As the number of new chemicals developed and being used keep adding every year, having the toxic profiles of each chemical becomes a daunting challenge. To meet this information gap, EPA suggested that certain in vitro assays and computational methods, which predict toxicity related information in m...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 691 |
---|---|
container_issue | |
container_start_page | 686 |
container_title | |
container_volume | |
creator | Mishra, M Hongliang Fei Jun Huan |
description | As the number of new chemicals developed and being used keep adding every year, having the toxic profiles of each chemical becomes a daunting challenge. To meet this information gap, EPA suggested that certain in vitro assays and computational methods, which predict toxicity related information in much lesser time and cost than traditional in vivo methods, may be used. In this paper, we use computational techniques to use results from certain in vitro assays applied on 309 chemicals (whose toxicity profile is readily available) along with the molecular descriptors and other computed physical-chemical properties of the chemicals to predict the toxicity caused by chemical at a particular endpoint. The dataset is available from EPA TOXCAST group online. We show that Random Forest and Naïve Bayes have a good performance on this dataset. We also show that using small and related trees in random forest help to further improve the performance. |
doi_str_mv | 10.1109/BIBM.2010.5706653 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5706653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5706653</ieee_id><sourcerecordid>5706653</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2780c79a30fb8b655c6f4c582ec9b6196466551a686d550b0f14f3dbf923ad283</originalsourceid><addsrcrecordid>eNo1j0tLAzEUhSMiqHV-gLiZhdupN497kyzt4KNQcdN9STIJRFpnmIlg_70j1rM5fJuPcxi75bDkHOzDar16WwqYETUQoTxjldWGK6GUkaDxnF3_A9lLVk3TB8xBoVGqK3bf9ofhq7iS-0-3r4cxdjn8Qt2nuvTfOeRyvGEXye2nWJ16wbbPT9v2tdm8v6zbx02TLZRGaANBWycheeMJMVBSAY2IwXriltS8D7kjQx0ieEhcJdn5ZIV0nTBywe7-tDnGuBvGfHDjcXf6JX8AlOM_qQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational prediction of toxicity</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mishra, M ; Hongliang Fei ; Jun Huan</creator><creatorcontrib>Mishra, M ; Hongliang Fei ; Jun Huan</creatorcontrib><description>As the number of new chemicals developed and being used keep adding every year, having the toxic profiles of each chemical becomes a daunting challenge. To meet this information gap, EPA suggested that certain in vitro assays and computational methods, which predict toxicity related information in much lesser time and cost than traditional in vivo methods, may be used. In this paper, we use computational techniques to use results from certain in vitro assays applied on 309 chemicals (whose toxicity profile is readily available) along with the molecular descriptors and other computed physical-chemical properties of the chemicals to predict the toxicity caused by chemical at a particular endpoint. The dataset is available from EPA TOXCAST group online. We show that Random Forest and Naïve Bayes have a good performance on this dataset. We also show that using small and related trees in random forest help to further improve the performance.</description><identifier>ISBN: 1424483069</identifier><identifier>ISBN: 9781424483068</identifier><identifier>EISBN: 9781424483075</identifier><identifier>EISBN: 1424483077</identifier><identifier>DOI: 10.1109/BIBM.2010.5706653</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Boosting ; Chemicals ; Classification algorithms ; In vitro ; In vivo ; Prediction algorithms</subject><ispartof>2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2010, p.686-691</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5706653$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5706653$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mishra, M</creatorcontrib><creatorcontrib>Hongliang Fei</creatorcontrib><creatorcontrib>Jun Huan</creatorcontrib><title>Computational prediction of toxicity</title><title>2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)</title><addtitle>BIBM</addtitle><description>As the number of new chemicals developed and being used keep adding every year, having the toxic profiles of each chemical becomes a daunting challenge. To meet this information gap, EPA suggested that certain in vitro assays and computational methods, which predict toxicity related information in much lesser time and cost than traditional in vivo methods, may be used. In this paper, we use computational techniques to use results from certain in vitro assays applied on 309 chemicals (whose toxicity profile is readily available) along with the molecular descriptors and other computed physical-chemical properties of the chemicals to predict the toxicity caused by chemical at a particular endpoint. The dataset is available from EPA TOXCAST group online. We show that Random Forest and Naïve Bayes have a good performance on this dataset. We also show that using small and related trees in random forest help to further improve the performance.</description><subject>Accuracy</subject><subject>Boosting</subject><subject>Chemicals</subject><subject>Classification algorithms</subject><subject>In vitro</subject><subject>In vivo</subject><subject>Prediction algorithms</subject><isbn>1424483069</isbn><isbn>9781424483068</isbn><isbn>9781424483075</isbn><isbn>1424483077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLAzEUhSMiqHV-gLiZhdupN497kyzt4KNQcdN9STIJRFpnmIlg_70j1rM5fJuPcxi75bDkHOzDar16WwqYETUQoTxjldWGK6GUkaDxnF3_A9lLVk3TB8xBoVGqK3bf9ofhq7iS-0-3r4cxdjn8Qt2nuvTfOeRyvGEXye2nWJ16wbbPT9v2tdm8v6zbx02TLZRGaANBWycheeMJMVBSAY2IwXriltS8D7kjQx0ieEhcJdn5ZIV0nTBywe7-tDnGuBvGfHDjcXf6JX8AlOM_qQ</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Mishra, M</creator><creator>Hongliang Fei</creator><creator>Jun Huan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Computational prediction of toxicity</title><author>Mishra, M ; Hongliang Fei ; Jun Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2780c79a30fb8b655c6f4c582ec9b6196466551a686d550b0f14f3dbf923ad283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Boosting</topic><topic>Chemicals</topic><topic>Classification algorithms</topic><topic>In vitro</topic><topic>In vivo</topic><topic>Prediction algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Mishra, M</creatorcontrib><creatorcontrib>Hongliang Fei</creatorcontrib><creatorcontrib>Jun Huan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mishra, M</au><au>Hongliang Fei</au><au>Jun Huan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational prediction of toxicity</atitle><btitle>2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)</btitle><stitle>BIBM</stitle><date>2010-12</date><risdate>2010</risdate><spage>686</spage><epage>691</epage><pages>686-691</pages><isbn>1424483069</isbn><isbn>9781424483068</isbn><eisbn>9781424483075</eisbn><eisbn>1424483077</eisbn><abstract>As the number of new chemicals developed and being used keep adding every year, having the toxic profiles of each chemical becomes a daunting challenge. To meet this information gap, EPA suggested that certain in vitro assays and computational methods, which predict toxicity related information in much lesser time and cost than traditional in vivo methods, may be used. In this paper, we use computational techniques to use results from certain in vitro assays applied on 309 chemicals (whose toxicity profile is readily available) along with the molecular descriptors and other computed physical-chemical properties of the chemicals to predict the toxicity caused by chemical at a particular endpoint. The dataset is available from EPA TOXCAST group online. We show that Random Forest and Naïve Bayes have a good performance on this dataset. We also show that using small and related trees in random forest help to further improve the performance.</abstract><pub>IEEE</pub><doi>10.1109/BIBM.2010.5706653</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424483069 |
ispartof | 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2010, p.686-691 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5706653 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Boosting Chemicals Classification algorithms In vitro In vivo Prediction algorithms |
title | Computational prediction of toxicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20prediction%20of%20toxicity&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20(BIBM)&rft.au=Mishra,%20M&rft.date=2010-12&rft.spage=686&rft.epage=691&rft.pages=686-691&rft.isbn=1424483069&rft.isbn_list=9781424483068&rft_id=info:doi/10.1109/BIBM.2010.5706653&rft_dat=%3Cieee_6IE%3E5706653%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424483075&rft.eisbn_list=1424483077&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5706653&rfr_iscdi=true |