Distributed Popularity Based Replica Placement in Data Grid Environments
Data grids support distributed data-intensive applications that need to access massive datasets stored around the world. Ensuring efficient access to such datasets is hindered by the high latencies of wide-area networks. To speed up access, files can be replicated so a user can access a nearby repli...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | |
container_start_page | 66 |
container_title | |
container_volume | |
creator | Shorfuzzaman, M Graham, P Eskicioglu, R |
description | Data grids support distributed data-intensive applications that need to access massive datasets stored around the world. Ensuring efficient access to such datasets is hindered by the high latencies of wide-area networks. To speed up access, files can be replicated so a user can access a nearby replica. Replication also provides improved availability, decreased bandwidth use, increased fault tolerance, and improved scalability. Since a grid environment is dynamic, resource availability, network latency, and user requests may change. To address these issues a dynamic replica placement strategy that adapts to changing behaviour is needed. In this paper, we introduce a highly distributed replica placement algorithm for hierarchical data grids. Our algorithm exploits data access histories to identify popular files and determines optimal replication locations to improve access performance by minimizing replication overhead (access and update) assuming a given traffic pattern. The problem is formulated using dynamic programming. We evaluate our algorithm using the OptorSim simulator and find that it offers shorter execution time and reduced bandwidth consumption compared to other dynamic replica placement methods. |
doi_str_mv | 10.1109/PDCAT.2010.78 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5704405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5704405</ieee_id><sourcerecordid>5704405</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-68798cabd6529940658351c52a0e2486a92ce08d2aa9c71d0f8a720870a29f3</originalsourceid><addsrcrecordid>eNotjMFKw0AURUdUsNYsXbmZH0h9M5nJvLesaW2FgqF04a68JhMYSdOQpEL_3hRdXe65hyvEs4KZUkCv-SKb72Yaxu7wRkTkEFxK1mh05lY8KqONoVH9uhMTnTiKbWL1g4j6_hsAEoVISBOxXoR-6MLhPPhS5qf2XHMXhot8434EW9_WoWCZ11z4o28GGRq54IHlqgulXDY_oTs116F_EvcV172P_nMqtu_LXbaON5-rj2y-iQPBEKfoCAs-lKnVRAZSi4lVhdUMXhtMmXThAUvNTIVTJVTITgM6YE1VMhUvf6fBe79vu3Dk7rK3DowBm_wC1RFM7Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Distributed Popularity Based Replica Placement in Data Grid Environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shorfuzzaman, M ; Graham, P ; Eskicioglu, R</creator><creatorcontrib>Shorfuzzaman, M ; Graham, P ; Eskicioglu, R</creatorcontrib><description>Data grids support distributed data-intensive applications that need to access massive datasets stored around the world. Ensuring efficient access to such datasets is hindered by the high latencies of wide-area networks. To speed up access, files can be replicated so a user can access a nearby replica. Replication also provides improved availability, decreased bandwidth use, increased fault tolerance, and improved scalability. Since a grid environment is dynamic, resource availability, network latency, and user requests may change. To address these issues a dynamic replica placement strategy that adapts to changing behaviour is needed. In this paper, we introduce a highly distributed replica placement algorithm for hierarchical data grids. Our algorithm exploits data access histories to identify popular files and determines optimal replication locations to improve access performance by minimizing replication overhead (access and update) assuming a given traffic pattern. The problem is formulated using dynamic programming. We evaluate our algorithm using the OptorSim simulator and find that it offers shorter execution time and reduced bandwidth consumption compared to other dynamic replica placement methods.</description><identifier>ISSN: 2379-5352</identifier><identifier>ISBN: 142449110X</identifier><identifier>ISBN: 9781424491100</identifier><identifier>EISBN: 9780769542874</identifier><identifier>EISBN: 0769542875</identifier><identifier>DOI: 10.1109/PDCAT.2010.78</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Cost function ; data grids ; Data models ; distributed algorithms ; Dynamic programming ; file popularity ; Heuristic algorithms ; Peer to peer computing ; replication ; Servers</subject><ispartof>2010 International Conference on Parallel and Distributed Computing, Applications and Technologies, 2010, p.66-77</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5704405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5704405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shorfuzzaman, M</creatorcontrib><creatorcontrib>Graham, P</creatorcontrib><creatorcontrib>Eskicioglu, R</creatorcontrib><title>Distributed Popularity Based Replica Placement in Data Grid Environments</title><title>2010 International Conference on Parallel and Distributed Computing, Applications and Technologies</title><addtitle>pdcat</addtitle><description>Data grids support distributed data-intensive applications that need to access massive datasets stored around the world. Ensuring efficient access to such datasets is hindered by the high latencies of wide-area networks. To speed up access, files can be replicated so a user can access a nearby replica. Replication also provides improved availability, decreased bandwidth use, increased fault tolerance, and improved scalability. Since a grid environment is dynamic, resource availability, network latency, and user requests may change. To address these issues a dynamic replica placement strategy that adapts to changing behaviour is needed. In this paper, we introduce a highly distributed replica placement algorithm for hierarchical data grids. Our algorithm exploits data access histories to identify popular files and determines optimal replication locations to improve access performance by minimizing replication overhead (access and update) assuming a given traffic pattern. The problem is formulated using dynamic programming. We evaluate our algorithm using the OptorSim simulator and find that it offers shorter execution time and reduced bandwidth consumption compared to other dynamic replica placement methods.</description><subject>Bandwidth</subject><subject>Cost function</subject><subject>data grids</subject><subject>Data models</subject><subject>distributed algorithms</subject><subject>Dynamic programming</subject><subject>file popularity</subject><subject>Heuristic algorithms</subject><subject>Peer to peer computing</subject><subject>replication</subject><subject>Servers</subject><issn>2379-5352</issn><isbn>142449110X</isbn><isbn>9781424491100</isbn><isbn>9780769542874</isbn><isbn>0769542875</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMFKw0AURUdUsNYsXbmZH0h9M5nJvLesaW2FgqF04a68JhMYSdOQpEL_3hRdXe65hyvEs4KZUkCv-SKb72Yaxu7wRkTkEFxK1mh05lY8KqONoVH9uhMTnTiKbWL1g4j6_hsAEoVISBOxXoR-6MLhPPhS5qf2XHMXhot8434EW9_WoWCZ11z4o28GGRq54IHlqgulXDY_oTs116F_EvcV172P_nMqtu_LXbaON5-rj2y-iQPBEKfoCAs-lKnVRAZSi4lVhdUMXhtMmXThAUvNTIVTJVTITgM6YE1VMhUvf6fBe79vu3Dk7rK3DowBm_wC1RFM7Q</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Shorfuzzaman, M</creator><creator>Graham, P</creator><creator>Eskicioglu, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Distributed Popularity Based Replica Placement in Data Grid Environments</title><author>Shorfuzzaman, M ; Graham, P ; Eskicioglu, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-68798cabd6529940658351c52a0e2486a92ce08d2aa9c71d0f8a720870a29f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bandwidth</topic><topic>Cost function</topic><topic>data grids</topic><topic>Data models</topic><topic>distributed algorithms</topic><topic>Dynamic programming</topic><topic>file popularity</topic><topic>Heuristic algorithms</topic><topic>Peer to peer computing</topic><topic>replication</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Shorfuzzaman, M</creatorcontrib><creatorcontrib>Graham, P</creatorcontrib><creatorcontrib>Eskicioglu, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shorfuzzaman, M</au><au>Graham, P</au><au>Eskicioglu, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Distributed Popularity Based Replica Placement in Data Grid Environments</atitle><btitle>2010 International Conference on Parallel and Distributed Computing, Applications and Technologies</btitle><stitle>pdcat</stitle><date>2010-12</date><risdate>2010</risdate><spage>66</spage><epage>77</epage><pages>66-77</pages><issn>2379-5352</issn><isbn>142449110X</isbn><isbn>9781424491100</isbn><eisbn>9780769542874</eisbn><eisbn>0769542875</eisbn><abstract>Data grids support distributed data-intensive applications that need to access massive datasets stored around the world. Ensuring efficient access to such datasets is hindered by the high latencies of wide-area networks. To speed up access, files can be replicated so a user can access a nearby replica. Replication also provides improved availability, decreased bandwidth use, increased fault tolerance, and improved scalability. Since a grid environment is dynamic, resource availability, network latency, and user requests may change. To address these issues a dynamic replica placement strategy that adapts to changing behaviour is needed. In this paper, we introduce a highly distributed replica placement algorithm for hierarchical data grids. Our algorithm exploits data access histories to identify popular files and determines optimal replication locations to improve access performance by minimizing replication overhead (access and update) assuming a given traffic pattern. The problem is formulated using dynamic programming. We evaluate our algorithm using the OptorSim simulator and find that it offers shorter execution time and reduced bandwidth consumption compared to other dynamic replica placement methods.</abstract><pub>IEEE</pub><doi>10.1109/PDCAT.2010.78</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-5352 |
ispartof | 2010 International Conference on Parallel and Distributed Computing, Applications and Technologies, 2010, p.66-77 |
issn | 2379-5352 |
language | eng |
recordid | cdi_ieee_primary_5704405 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bandwidth Cost function data grids Data models distributed algorithms Dynamic programming file popularity Heuristic algorithms Peer to peer computing replication Servers |
title | Distributed Popularity Based Replica Placement in Data Grid Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Distributed%20Popularity%20Based%20Replica%20Placement%20in%20Data%20Grid%20Environments&rft.btitle=2010%20International%20Conference%20on%20Parallel%20and%20Distributed%20Computing,%20Applications%20and%20Technologies&rft.au=Shorfuzzaman,%20M&rft.date=2010-12&rft.spage=66&rft.epage=77&rft.pages=66-77&rft.issn=2379-5352&rft.isbn=142449110X&rft.isbn_list=9781424491100&rft_id=info:doi/10.1109/PDCAT.2010.78&rft_dat=%3Cieee_6IE%3E5704405%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542874&rft.eisbn_list=0769542875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5704405&rfr_iscdi=true |