Distributed Popularity Based Replica Placement in Data Grid Environments

Data grids support distributed data-intensive applications that need to access massive datasets stored around the world. Ensuring efficient access to such datasets is hindered by the high latencies of wide-area networks. To speed up access, files can be replicated so a user can access a nearby repli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shorfuzzaman, M, Graham, P, Eskicioglu, R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue
container_start_page 66
container_title
container_volume
creator Shorfuzzaman, M
Graham, P
Eskicioglu, R
description Data grids support distributed data-intensive applications that need to access massive datasets stored around the world. Ensuring efficient access to such datasets is hindered by the high latencies of wide-area networks. To speed up access, files can be replicated so a user can access a nearby replica. Replication also provides improved availability, decreased bandwidth use, increased fault tolerance, and improved scalability. Since a grid environment is dynamic, resource availability, network latency, and user requests may change. To address these issues a dynamic replica placement strategy that adapts to changing behaviour is needed. In this paper, we introduce a highly distributed replica placement algorithm for hierarchical data grids. Our algorithm exploits data access histories to identify popular files and determines optimal replication locations to improve access performance by minimizing replication overhead (access and update) assuming a given traffic pattern. The problem is formulated using dynamic programming. We evaluate our algorithm using the OptorSim simulator and find that it offers shorter execution time and reduced bandwidth consumption compared to other dynamic replica placement methods.
doi_str_mv 10.1109/PDCAT.2010.78
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5704405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5704405</ieee_id><sourcerecordid>5704405</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-68798cabd6529940658351c52a0e2486a92ce08d2aa9c71d0f8a720870a29f3</originalsourceid><addsrcrecordid>eNotjMFKw0AURUdUsNYsXbmZH0h9M5nJvLesaW2FgqF04a68JhMYSdOQpEL_3hRdXe65hyvEs4KZUkCv-SKb72Yaxu7wRkTkEFxK1mh05lY8KqONoVH9uhMTnTiKbWL1g4j6_hsAEoVISBOxXoR-6MLhPPhS5qf2XHMXhot8434EW9_WoWCZ11z4o28GGRq54IHlqgulXDY_oTs116F_EvcV172P_nMqtu_LXbaON5-rj2y-iQPBEKfoCAs-lKnVRAZSi4lVhdUMXhtMmXThAUvNTIVTJVTITgM6YE1VMhUvf6fBe79vu3Dk7rK3DowBm_wC1RFM7Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Distributed Popularity Based Replica Placement in Data Grid Environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shorfuzzaman, M ; Graham, P ; Eskicioglu, R</creator><creatorcontrib>Shorfuzzaman, M ; Graham, P ; Eskicioglu, R</creatorcontrib><description>Data grids support distributed data-intensive applications that need to access massive datasets stored around the world. Ensuring efficient access to such datasets is hindered by the high latencies of wide-area networks. To speed up access, files can be replicated so a user can access a nearby replica. Replication also provides improved availability, decreased bandwidth use, increased fault tolerance, and improved scalability. Since a grid environment is dynamic, resource availability, network latency, and user requests may change. To address these issues a dynamic replica placement strategy that adapts to changing behaviour is needed. In this paper, we introduce a highly distributed replica placement algorithm for hierarchical data grids. Our algorithm exploits data access histories to identify popular files and determines optimal replication locations to improve access performance by minimizing replication overhead (access and update) assuming a given traffic pattern. The problem is formulated using dynamic programming. We evaluate our algorithm using the OptorSim simulator and find that it offers shorter execution time and reduced bandwidth consumption compared to other dynamic replica placement methods.</description><identifier>ISSN: 2379-5352</identifier><identifier>ISBN: 142449110X</identifier><identifier>ISBN: 9781424491100</identifier><identifier>EISBN: 9780769542874</identifier><identifier>EISBN: 0769542875</identifier><identifier>DOI: 10.1109/PDCAT.2010.78</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Cost function ; data grids ; Data models ; distributed algorithms ; Dynamic programming ; file popularity ; Heuristic algorithms ; Peer to peer computing ; replication ; Servers</subject><ispartof>2010 International Conference on Parallel and Distributed Computing, Applications and Technologies, 2010, p.66-77</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5704405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5704405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shorfuzzaman, M</creatorcontrib><creatorcontrib>Graham, P</creatorcontrib><creatorcontrib>Eskicioglu, R</creatorcontrib><title>Distributed Popularity Based Replica Placement in Data Grid Environments</title><title>2010 International Conference on Parallel and Distributed Computing, Applications and Technologies</title><addtitle>pdcat</addtitle><description>Data grids support distributed data-intensive applications that need to access massive datasets stored around the world. Ensuring efficient access to such datasets is hindered by the high latencies of wide-area networks. To speed up access, files can be replicated so a user can access a nearby replica. Replication also provides improved availability, decreased bandwidth use, increased fault tolerance, and improved scalability. Since a grid environment is dynamic, resource availability, network latency, and user requests may change. To address these issues a dynamic replica placement strategy that adapts to changing behaviour is needed. In this paper, we introduce a highly distributed replica placement algorithm for hierarchical data grids. Our algorithm exploits data access histories to identify popular files and determines optimal replication locations to improve access performance by minimizing replication overhead (access and update) assuming a given traffic pattern. The problem is formulated using dynamic programming. We evaluate our algorithm using the OptorSim simulator and find that it offers shorter execution time and reduced bandwidth consumption compared to other dynamic replica placement methods.</description><subject>Bandwidth</subject><subject>Cost function</subject><subject>data grids</subject><subject>Data models</subject><subject>distributed algorithms</subject><subject>Dynamic programming</subject><subject>file popularity</subject><subject>Heuristic algorithms</subject><subject>Peer to peer computing</subject><subject>replication</subject><subject>Servers</subject><issn>2379-5352</issn><isbn>142449110X</isbn><isbn>9781424491100</isbn><isbn>9780769542874</isbn><isbn>0769542875</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMFKw0AURUdUsNYsXbmZH0h9M5nJvLesaW2FgqF04a68JhMYSdOQpEL_3hRdXe65hyvEs4KZUkCv-SKb72Yaxu7wRkTkEFxK1mh05lY8KqONoVH9uhMTnTiKbWL1g4j6_hsAEoVISBOxXoR-6MLhPPhS5qf2XHMXhot8434EW9_WoWCZ11z4o28GGRq54IHlqgulXDY_oTs116F_EvcV172P_nMqtu_LXbaON5-rj2y-iQPBEKfoCAs-lKnVRAZSi4lVhdUMXhtMmXThAUvNTIVTJVTITgM6YE1VMhUvf6fBe79vu3Dk7rK3DowBm_wC1RFM7Q</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Shorfuzzaman, M</creator><creator>Graham, P</creator><creator>Eskicioglu, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Distributed Popularity Based Replica Placement in Data Grid Environments</title><author>Shorfuzzaman, M ; Graham, P ; Eskicioglu, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-68798cabd6529940658351c52a0e2486a92ce08d2aa9c71d0f8a720870a29f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bandwidth</topic><topic>Cost function</topic><topic>data grids</topic><topic>Data models</topic><topic>distributed algorithms</topic><topic>Dynamic programming</topic><topic>file popularity</topic><topic>Heuristic algorithms</topic><topic>Peer to peer computing</topic><topic>replication</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Shorfuzzaman, M</creatorcontrib><creatorcontrib>Graham, P</creatorcontrib><creatorcontrib>Eskicioglu, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shorfuzzaman, M</au><au>Graham, P</au><au>Eskicioglu, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Distributed Popularity Based Replica Placement in Data Grid Environments</atitle><btitle>2010 International Conference on Parallel and Distributed Computing, Applications and Technologies</btitle><stitle>pdcat</stitle><date>2010-12</date><risdate>2010</risdate><spage>66</spage><epage>77</epage><pages>66-77</pages><issn>2379-5352</issn><isbn>142449110X</isbn><isbn>9781424491100</isbn><eisbn>9780769542874</eisbn><eisbn>0769542875</eisbn><abstract>Data grids support distributed data-intensive applications that need to access massive datasets stored around the world. Ensuring efficient access to such datasets is hindered by the high latencies of wide-area networks. To speed up access, files can be replicated so a user can access a nearby replica. Replication also provides improved availability, decreased bandwidth use, increased fault tolerance, and improved scalability. Since a grid environment is dynamic, resource availability, network latency, and user requests may change. To address these issues a dynamic replica placement strategy that adapts to changing behaviour is needed. In this paper, we introduce a highly distributed replica placement algorithm for hierarchical data grids. Our algorithm exploits data access histories to identify popular files and determines optimal replication locations to improve access performance by minimizing replication overhead (access and update) assuming a given traffic pattern. The problem is formulated using dynamic programming. We evaluate our algorithm using the OptorSim simulator and find that it offers shorter execution time and reduced bandwidth consumption compared to other dynamic replica placement methods.</abstract><pub>IEEE</pub><doi>10.1109/PDCAT.2010.78</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-5352
ispartof 2010 International Conference on Parallel and Distributed Computing, Applications and Technologies, 2010, p.66-77
issn 2379-5352
language eng
recordid cdi_ieee_primary_5704405
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bandwidth
Cost function
data grids
Data models
distributed algorithms
Dynamic programming
file popularity
Heuristic algorithms
Peer to peer computing
replication
Servers
title Distributed Popularity Based Replica Placement in Data Grid Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Distributed%20Popularity%20Based%20Replica%20Placement%20in%20Data%20Grid%20Environments&rft.btitle=2010%20International%20Conference%20on%20Parallel%20and%20Distributed%20Computing,%20Applications%20and%20Technologies&rft.au=Shorfuzzaman,%20M&rft.date=2010-12&rft.spage=66&rft.epage=77&rft.pages=66-77&rft.issn=2379-5352&rft.isbn=142449110X&rft.isbn_list=9781424491100&rft_id=info:doi/10.1109/PDCAT.2010.78&rft_dat=%3Cieee_6IE%3E5704405%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542874&rft.eisbn_list=0769542875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5704405&rfr_iscdi=true