Quantifying the performance of compressive sensing on scalp EEG signals

Compressive sensing is a new data compression paradigm that has shown significant promise in fields such as MRI. However, the practical performance of the theory very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abdulghani, A M, Casson, A J, Rodriguez-Villegas, E
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Abdulghani, A M
Casson, A J
Rodriguez-Villegas, E
description Compressive sensing is a new data compression paradigm that has shown significant promise in fields such as MRI. However, the practical performance of the theory very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Electroencephalography (EEG) is a fundamental tool for the investigation of many neurological disorders and is increasingly also used in many non-medical applications, such as Brain-Computer Interfaces. This paper characterises in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals for the first time. The results are of particular interest for wearable EEG communication systems requiring low power, real-time compression of the EEG data.
doi_str_mv 10.1109/ISABEL.2010.5702814
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5702814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5702814</ieee_id><sourcerecordid>5702814</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1354-4e217e6a7c340d0672617807a6c9496fdf9a094e3cbf21ce54d5ecc5678016363</originalsourceid><addsrcrecordid>eNo9kMtOwzAURM1LopR8QTf-gRRfP-NlqdJQKRJCwLoyznUxapMoLkj9e4IozGakOaNZDCEzYHMAZu_Wz4v7sp5zNgbKMF6APCM3ILmUBQhmz8mEC65yJQRckMya4o-BvvxnoK5JltIHG6W4UQwmpHr6dO0hhmNst_TwjrTHIXTD3rUeaReo7_b9gCnFL6QJ2_RT61qavNv1tCwrmuK2dbt0S67CaJidfEpeV-XL8iGvH6v1clHnEYSSuUQOBrUzXkjWMG24BlMw47S30urQBOuYlSj8W-DgUclGofdKjyXQQospmf3uRkTc9EPcu-G4OX0ivgHg_FBK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Quantifying the performance of compressive sensing on scalp EEG signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abdulghani, A M ; Casson, A J ; Rodriguez-Villegas, E</creator><creatorcontrib>Abdulghani, A M ; Casson, A J ; Rodriguez-Villegas, E</creatorcontrib><description>Compressive sensing is a new data compression paradigm that has shown significant promise in fields such as MRI. However, the practical performance of the theory very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Electroencephalography (EEG) is a fundamental tool for the investigation of many neurological disorders and is increasingly also used in many non-medical applications, such as Brain-Computer Interfaces. This paper characterises in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals for the first time. The results are of particular interest for wearable EEG communication systems requiring low power, real-time compression of the EEG data.</description><identifier>ISSN: 2325-5315</identifier><identifier>ISBN: 9781424481316</identifier><identifier>ISBN: 1424481317</identifier><identifier>EISSN: 2325-5331</identifier><identifier>EISBN: 1424481309</identifier><identifier>EISBN: 1424481325</identifier><identifier>EISBN: 9781424481309</identifier><identifier>EISBN: 9781424481323</identifier><identifier>DOI: 10.1109/ISABEL.2010.5702814</identifier><language>eng</language><publisher>IEEE</publisher><subject>Compressed sensing ; Dictionaries ; Electroencephalography ; Matching pursuit algorithms ; Reconstruction algorithms ; Scalp ; Spline</subject><ispartof>2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), 2010, p.1-5</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5702814$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5702814$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abdulghani, A M</creatorcontrib><creatorcontrib>Casson, A J</creatorcontrib><creatorcontrib>Rodriguez-Villegas, E</creatorcontrib><title>Quantifying the performance of compressive sensing on scalp EEG signals</title><title>2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)</title><addtitle>ISABEL</addtitle><description>Compressive sensing is a new data compression paradigm that has shown significant promise in fields such as MRI. However, the practical performance of the theory very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Electroencephalography (EEG) is a fundamental tool for the investigation of many neurological disorders and is increasingly also used in many non-medical applications, such as Brain-Computer Interfaces. This paper characterises in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals for the first time. The results are of particular interest for wearable EEG communication systems requiring low power, real-time compression of the EEG data.</description><subject>Compressed sensing</subject><subject>Dictionaries</subject><subject>Electroencephalography</subject><subject>Matching pursuit algorithms</subject><subject>Reconstruction algorithms</subject><subject>Scalp</subject><subject>Spline</subject><issn>2325-5315</issn><issn>2325-5331</issn><isbn>9781424481316</isbn><isbn>1424481317</isbn><isbn>1424481309</isbn><isbn>1424481325</isbn><isbn>9781424481309</isbn><isbn>9781424481323</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURM1LopR8QTf-gRRfP-NlqdJQKRJCwLoyznUxapMoLkj9e4IozGakOaNZDCEzYHMAZu_Wz4v7sp5zNgbKMF6APCM3ILmUBQhmz8mEC65yJQRckMya4o-BvvxnoK5JltIHG6W4UQwmpHr6dO0hhmNst_TwjrTHIXTD3rUeaReo7_b9gCnFL6QJ2_RT61qavNv1tCwrmuK2dbt0S67CaJidfEpeV-XL8iGvH6v1clHnEYSSuUQOBrUzXkjWMG24BlMw47S30urQBOuYlSj8W-DgUclGofdKjyXQQospmf3uRkTc9EPcu-G4OX0ivgHg_FBK</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Abdulghani, A M</creator><creator>Casson, A J</creator><creator>Rodriguez-Villegas, E</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Quantifying the performance of compressive sensing on scalp EEG signals</title><author>Abdulghani, A M ; Casson, A J ; Rodriguez-Villegas, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1354-4e217e6a7c340d0672617807a6c9496fdf9a094e3cbf21ce54d5ecc5678016363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Compressed sensing</topic><topic>Dictionaries</topic><topic>Electroencephalography</topic><topic>Matching pursuit algorithms</topic><topic>Reconstruction algorithms</topic><topic>Scalp</topic><topic>Spline</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdulghani, A M</creatorcontrib><creatorcontrib>Casson, A J</creatorcontrib><creatorcontrib>Rodriguez-Villegas, E</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abdulghani, A M</au><au>Casson, A J</au><au>Rodriguez-Villegas, E</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Quantifying the performance of compressive sensing on scalp EEG signals</atitle><btitle>2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)</btitle><stitle>ISABEL</stitle><date>2010-11</date><risdate>2010</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2325-5315</issn><eissn>2325-5331</eissn><isbn>9781424481316</isbn><isbn>1424481317</isbn><eisbn>1424481309</eisbn><eisbn>1424481325</eisbn><eisbn>9781424481309</eisbn><eisbn>9781424481323</eisbn><abstract>Compressive sensing is a new data compression paradigm that has shown significant promise in fields such as MRI. However, the practical performance of the theory very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Electroencephalography (EEG) is a fundamental tool for the investigation of many neurological disorders and is increasingly also used in many non-medical applications, such as Brain-Computer Interfaces. This paper characterises in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals for the first time. The results are of particular interest for wearable EEG communication systems requiring low power, real-time compression of the EEG data.</abstract><pub>IEEE</pub><doi>10.1109/ISABEL.2010.5702814</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5315
ispartof 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), 2010, p.1-5
issn 2325-5315
2325-5331
language eng
recordid cdi_ieee_primary_5702814
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Compressed sensing
Dictionaries
Electroencephalography
Matching pursuit algorithms
Reconstruction algorithms
Scalp
Spline
title Quantifying the performance of compressive sensing on scalp EEG signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Quantifying%20the%20performance%20of%20compressive%20sensing%20on%20scalp%20EEG%20signals&rft.btitle=2010%203rd%20International%20Symposium%20on%20Applied%20Sciences%20in%20Biomedical%20and%20Communication%20Technologies%20(ISABEL%202010)&rft.au=Abdulghani,%20A%20M&rft.date=2010-11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2325-5315&rft.eissn=2325-5331&rft.isbn=9781424481316&rft.isbn_list=1424481317&rft_id=info:doi/10.1109/ISABEL.2010.5702814&rft_dat=%3Cieee_6IE%3E5702814%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481309&rft.eisbn_list=1424481325&rft.eisbn_list=9781424481309&rft.eisbn_list=9781424481323&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5702814&rfr_iscdi=true