Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets
In this paper we mine over 80 million twitter micro logs in order to explore whether data from this social media initiative can be used to identify sentiment about tourism and Thailand amid the unrest in that country during the early part of 2010 and further whether analysis of tweets can be used to...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | |
container_start_page | 89 |
container_title | |
container_volume | |
creator | Claster, W B Cooper, M Sallis, P |
description | In this paper we mine over 80 million twitter micro logs in order to explore whether data from this social media initiative can be used to identify sentiment about tourism and Thailand amid the unrest in that country during the early part of 2010 and further whether analysis of tweets can be used to discern the effect of that unrest on Phuket's tourism environment. It is proposed that this analysis can provide measurable insights through summarization, keyword analysis and clustering. We measure sentiment using a binary choice keyword algorithm. A multi-knowledge based approach is proposed using, Self-Organizing Maps along with sentiment polarity in order to model sentiment. We develop a visual model to express a sentiment concept vocabulary and then apply this model to maximums and minimums in the time series sentiment data. The results show actionable knowledge can be extracted in real time. |
doi_str_mv | 10.1109/CIMSiM.2010.98 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5701826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5701826</ieee_id><sourcerecordid>5701826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c135t-6d8adeaf3c3b77bb7124fe3fb5cd4f525a4b223a80ca7953c9bdef42597665713</originalsourceid><addsrcrecordid>eNo9jMtOwkAYhcdbIiJbN27mBYqd-4w7bLyQAC4oazJt_9FJ2kI6A4a1D-RD-GICGjfny7nkIHRD0iEhqbnLxtO5nw5pug-MPkEDo3SqpBGcSkpOUY8SKRMtGDlDV4RTzrUUlJz_F5RdokEIvkipVFJoanroM3-3vrZthZME56tN50ODDzZbta72ZbzH01UFtW_f8Bza6Ju9YNetGpx_-Bih2xMgBrwIh83Mfn9tAT_YHYTjz6INmzV0Wx-gwqMueudLb2s8g013RAzX6MLZOsDgj320eHrMs5dk8vo8zkaTpCRMxERW2lZgHStZoVRRKEK5A-YKUVbcCSosLyhlVqelVUaw0hQVOE6FUVIKRVgf3f7-egBYrjvf2G63FColmkr2A_BkZyg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Claster, W B ; Cooper, M ; Sallis, P</creator><creatorcontrib>Claster, W B ; Cooper, M ; Sallis, P</creatorcontrib><description>In this paper we mine over 80 million twitter micro logs in order to explore whether data from this social media initiative can be used to identify sentiment about tourism and Thailand amid the unrest in that country during the early part of 2010 and further whether analysis of tweets can be used to discern the effect of that unrest on Phuket's tourism environment. It is proposed that this analysis can provide measurable insights through summarization, keyword analysis and clustering. We measure sentiment using a binary choice keyword algorithm. A multi-knowledge based approach is proposed using, Self-Organizing Maps along with sentiment polarity in order to model sentiment. We develop a visual model to express a sentiment concept vocabulary and then apply this model to maximums and minimums in the time series sentiment data. The results show actionable knowledge can be extracted in real time.</description><identifier>ISSN: 2166-8523</identifier><identifier>ISBN: 1424486521</identifier><identifier>ISBN: 9781424486526</identifier><identifier>EISSN: 2166-8531</identifier><identifier>EISBN: 9780769542621</identifier><identifier>EISBN: 076954262X</identifier><identifier>DOI: 10.1109/CIMSiM.2010.98</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asia ; Business ; Data mining ; Data visualization ; Self organizing feature maps ; Semantic Web ; Sentiment Mining ; Social Networks ; SOM ; Text Mining ; Time series analysis ; Tourism ; Twitter</subject><ispartof>2010 Second International Conference on Computational Intelligence, Modelling and Simulation, 2010, p.89-94</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c135t-6d8adeaf3c3b77bb7124fe3fb5cd4f525a4b223a80ca7953c9bdef42597665713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5701826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5701826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Claster, W B</creatorcontrib><creatorcontrib>Cooper, M</creatorcontrib><creatorcontrib>Sallis, P</creatorcontrib><title>Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets</title><title>2010 Second International Conference on Computational Intelligence, Modelling and Simulation</title><addtitle>cimsim</addtitle><description>In this paper we mine over 80 million twitter micro logs in order to explore whether data from this social media initiative can be used to identify sentiment about tourism and Thailand amid the unrest in that country during the early part of 2010 and further whether analysis of tweets can be used to discern the effect of that unrest on Phuket's tourism environment. It is proposed that this analysis can provide measurable insights through summarization, keyword analysis and clustering. We measure sentiment using a binary choice keyword algorithm. A multi-knowledge based approach is proposed using, Self-Organizing Maps along with sentiment polarity in order to model sentiment. We develop a visual model to express a sentiment concept vocabulary and then apply this model to maximums and minimums in the time series sentiment data. The results show actionable knowledge can be extracted in real time.</description><subject>Asia</subject><subject>Business</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Self organizing feature maps</subject><subject>Semantic Web</subject><subject>Sentiment Mining</subject><subject>Social Networks</subject><subject>SOM</subject><subject>Text Mining</subject><subject>Time series analysis</subject><subject>Tourism</subject><subject>Twitter</subject><issn>2166-8523</issn><issn>2166-8531</issn><isbn>1424486521</isbn><isbn>9781424486526</isbn><isbn>9780769542621</isbn><isbn>076954262X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jMtOwkAYhcdbIiJbN27mBYqd-4w7bLyQAC4oazJt_9FJ2kI6A4a1D-RD-GICGjfny7nkIHRD0iEhqbnLxtO5nw5pug-MPkEDo3SqpBGcSkpOUY8SKRMtGDlDV4RTzrUUlJz_F5RdokEIvkipVFJoanroM3-3vrZthZME56tN50ODDzZbta72ZbzH01UFtW_f8Bza6Ju9YNetGpx_-Bih2xMgBrwIh83Mfn9tAT_YHYTjz6INmzV0Wx-gwqMueudLb2s8g013RAzX6MLZOsDgj320eHrMs5dk8vo8zkaTpCRMxERW2lZgHStZoVRRKEK5A-YKUVbcCSosLyhlVqelVUaw0hQVOE6FUVIKRVgf3f7-egBYrjvf2G63FColmkr2A_BkZyg</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Claster, W B</creator><creator>Cooper, M</creator><creator>Sallis, P</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201009</creationdate><title>Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets</title><author>Claster, W B ; Cooper, M ; Sallis, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c135t-6d8adeaf3c3b77bb7124fe3fb5cd4f525a4b223a80ca7953c9bdef42597665713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Asia</topic><topic>Business</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Self organizing feature maps</topic><topic>Semantic Web</topic><topic>Sentiment Mining</topic><topic>Social Networks</topic><topic>SOM</topic><topic>Text Mining</topic><topic>Time series analysis</topic><topic>Tourism</topic><topic>Twitter</topic><toplevel>online_resources</toplevel><creatorcontrib>Claster, W B</creatorcontrib><creatorcontrib>Cooper, M</creatorcontrib><creatorcontrib>Sallis, P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Claster, W B</au><au>Cooper, M</au><au>Sallis, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets</atitle><btitle>2010 Second International Conference on Computational Intelligence, Modelling and Simulation</btitle><stitle>cimsim</stitle><date>2010-09</date><risdate>2010</risdate><spage>89</spage><epage>94</epage><pages>89-94</pages><issn>2166-8523</issn><eissn>2166-8531</eissn><isbn>1424486521</isbn><isbn>9781424486526</isbn><eisbn>9780769542621</eisbn><eisbn>076954262X</eisbn><abstract>In this paper we mine over 80 million twitter micro logs in order to explore whether data from this social media initiative can be used to identify sentiment about tourism and Thailand amid the unrest in that country during the early part of 2010 and further whether analysis of tweets can be used to discern the effect of that unrest on Phuket's tourism environment. It is proposed that this analysis can provide measurable insights through summarization, keyword analysis and clustering. We measure sentiment using a binary choice keyword algorithm. A multi-knowledge based approach is proposed using, Self-Organizing Maps along with sentiment polarity in order to model sentiment. We develop a visual model to express a sentiment concept vocabulary and then apply this model to maximums and minimums in the time series sentiment data. The results show actionable knowledge can be extracted in real time.</abstract><pub>IEEE</pub><doi>10.1109/CIMSiM.2010.98</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2166-8523 |
ispartof | 2010 Second International Conference on Computational Intelligence, Modelling and Simulation, 2010, p.89-94 |
issn | 2166-8523 2166-8531 |
language | eng |
recordid | cdi_ieee_primary_5701826 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Asia Business Data mining Data visualization Self organizing feature maps Semantic Web Sentiment Mining Social Networks SOM Text Mining Time series analysis Tourism |
title | Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thailand%20--%20Tourism%20and%20Conflict:%20Modeling%20Sentiment%20from%20Twitter%20Tweets%20Using%20Na%C3%AFve%20Bayes%20and%20Unsupervised%20Artificial%20Neural%20Nets&rft.btitle=2010%20Second%20International%20Conference%20on%20Computational%20Intelligence,%20Modelling%20and%20Simulation&rft.au=Claster,%20W%20B&rft.date=2010-09&rft.spage=89&rft.epage=94&rft.pages=89-94&rft.issn=2166-8523&rft.eissn=2166-8531&rft.isbn=1424486521&rft.isbn_list=9781424486526&rft_id=info:doi/10.1109/CIMSiM.2010.98&rft_dat=%3Cieee_6IE%3E5701826%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542621&rft.eisbn_list=076954262X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5701826&rfr_iscdi=true |