Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets

In this paper we mine over 80 million twitter micro logs in order to explore whether data from this social media initiative can be used to identify sentiment about tourism and Thailand amid the unrest in that country during the early part of 2010 and further whether analysis of tweets can be used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Claster, W B, Cooper, M, Sallis, P
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue
container_start_page 89
container_title
container_volume
creator Claster, W B
Cooper, M
Sallis, P
description In this paper we mine over 80 million twitter micro logs in order to explore whether data from this social media initiative can be used to identify sentiment about tourism and Thailand amid the unrest in that country during the early part of 2010 and further whether analysis of tweets can be used to discern the effect of that unrest on Phuket's tourism environment. It is proposed that this analysis can provide measurable insights through summarization, keyword analysis and clustering. We measure sentiment using a binary choice keyword algorithm. A multi-knowledge based approach is proposed using, Self-Organizing Maps along with sentiment polarity in order to model sentiment. We develop a visual model to express a sentiment concept vocabulary and then apply this model to maximums and minimums in the time series sentiment data. The results show actionable knowledge can be extracted in real time.
doi_str_mv 10.1109/CIMSiM.2010.98
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5701826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5701826</ieee_id><sourcerecordid>5701826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c135t-6d8adeaf3c3b77bb7124fe3fb5cd4f525a4b223a80ca7953c9bdef42597665713</originalsourceid><addsrcrecordid>eNo9jMtOwkAYhcdbIiJbN27mBYqd-4w7bLyQAC4oazJt_9FJ2kI6A4a1D-RD-GICGjfny7nkIHRD0iEhqbnLxtO5nw5pug-MPkEDo3SqpBGcSkpOUY8SKRMtGDlDV4RTzrUUlJz_F5RdokEIvkipVFJoanroM3-3vrZthZME56tN50ODDzZbta72ZbzH01UFtW_f8Bza6Ju9YNetGpx_-Bih2xMgBrwIh83Mfn9tAT_YHYTjz6INmzV0Wx-gwqMueudLb2s8g013RAzX6MLZOsDgj320eHrMs5dk8vo8zkaTpCRMxERW2lZgHStZoVRRKEK5A-YKUVbcCSosLyhlVqelVUaw0hQVOE6FUVIKRVgf3f7-egBYrjvf2G63FColmkr2A_BkZyg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Claster, W B ; Cooper, M ; Sallis, P</creator><creatorcontrib>Claster, W B ; Cooper, M ; Sallis, P</creatorcontrib><description>In this paper we mine over 80 million twitter micro logs in order to explore whether data from this social media initiative can be used to identify sentiment about tourism and Thailand amid the unrest in that country during the early part of 2010 and further whether analysis of tweets can be used to discern the effect of that unrest on Phuket's tourism environment. It is proposed that this analysis can provide measurable insights through summarization, keyword analysis and clustering. We measure sentiment using a binary choice keyword algorithm. A multi-knowledge based approach is proposed using, Self-Organizing Maps along with sentiment polarity in order to model sentiment. We develop a visual model to express a sentiment concept vocabulary and then apply this model to maximums and minimums in the time series sentiment data. The results show actionable knowledge can be extracted in real time.</description><identifier>ISSN: 2166-8523</identifier><identifier>ISBN: 1424486521</identifier><identifier>ISBN: 9781424486526</identifier><identifier>EISSN: 2166-8531</identifier><identifier>EISBN: 9780769542621</identifier><identifier>EISBN: 076954262X</identifier><identifier>DOI: 10.1109/CIMSiM.2010.98</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asia ; Business ; Data mining ; Data visualization ; Self organizing feature maps ; Semantic Web ; Sentiment Mining ; Social Networks ; SOM ; Text Mining ; Time series analysis ; Tourism ; Twitter</subject><ispartof>2010 Second International Conference on Computational Intelligence, Modelling and Simulation, 2010, p.89-94</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c135t-6d8adeaf3c3b77bb7124fe3fb5cd4f525a4b223a80ca7953c9bdef42597665713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5701826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5701826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Claster, W B</creatorcontrib><creatorcontrib>Cooper, M</creatorcontrib><creatorcontrib>Sallis, P</creatorcontrib><title>Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets</title><title>2010 Second International Conference on Computational Intelligence, Modelling and Simulation</title><addtitle>cimsim</addtitle><description>In this paper we mine over 80 million twitter micro logs in order to explore whether data from this social media initiative can be used to identify sentiment about tourism and Thailand amid the unrest in that country during the early part of 2010 and further whether analysis of tweets can be used to discern the effect of that unrest on Phuket's tourism environment. It is proposed that this analysis can provide measurable insights through summarization, keyword analysis and clustering. We measure sentiment using a binary choice keyword algorithm. A multi-knowledge based approach is proposed using, Self-Organizing Maps along with sentiment polarity in order to model sentiment. We develop a visual model to express a sentiment concept vocabulary and then apply this model to maximums and minimums in the time series sentiment data. The results show actionable knowledge can be extracted in real time.</description><subject>Asia</subject><subject>Business</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Self organizing feature maps</subject><subject>Semantic Web</subject><subject>Sentiment Mining</subject><subject>Social Networks</subject><subject>SOM</subject><subject>Text Mining</subject><subject>Time series analysis</subject><subject>Tourism</subject><subject>Twitter</subject><issn>2166-8523</issn><issn>2166-8531</issn><isbn>1424486521</isbn><isbn>9781424486526</isbn><isbn>9780769542621</isbn><isbn>076954262X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jMtOwkAYhcdbIiJbN27mBYqd-4w7bLyQAC4oazJt_9FJ2kI6A4a1D-RD-GICGjfny7nkIHRD0iEhqbnLxtO5nw5pug-MPkEDo3SqpBGcSkpOUY8SKRMtGDlDV4RTzrUUlJz_F5RdokEIvkipVFJoanroM3-3vrZthZME56tN50ODDzZbta72ZbzH01UFtW_f8Bza6Ju9YNetGpx_-Bih2xMgBrwIh83Mfn9tAT_YHYTjz6INmzV0Wx-gwqMueudLb2s8g013RAzX6MLZOsDgj320eHrMs5dk8vo8zkaTpCRMxERW2lZgHStZoVRRKEK5A-YKUVbcCSosLyhlVqelVUaw0hQVOE6FUVIKRVgf3f7-egBYrjvf2G63FColmkr2A_BkZyg</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Claster, W B</creator><creator>Cooper, M</creator><creator>Sallis, P</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201009</creationdate><title>Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets</title><author>Claster, W B ; Cooper, M ; Sallis, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c135t-6d8adeaf3c3b77bb7124fe3fb5cd4f525a4b223a80ca7953c9bdef42597665713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Asia</topic><topic>Business</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Self organizing feature maps</topic><topic>Semantic Web</topic><topic>Sentiment Mining</topic><topic>Social Networks</topic><topic>SOM</topic><topic>Text Mining</topic><topic>Time series analysis</topic><topic>Tourism</topic><topic>Twitter</topic><toplevel>online_resources</toplevel><creatorcontrib>Claster, W B</creatorcontrib><creatorcontrib>Cooper, M</creatorcontrib><creatorcontrib>Sallis, P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Claster, W B</au><au>Cooper, M</au><au>Sallis, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets</atitle><btitle>2010 Second International Conference on Computational Intelligence, Modelling and Simulation</btitle><stitle>cimsim</stitle><date>2010-09</date><risdate>2010</risdate><spage>89</spage><epage>94</epage><pages>89-94</pages><issn>2166-8523</issn><eissn>2166-8531</eissn><isbn>1424486521</isbn><isbn>9781424486526</isbn><eisbn>9780769542621</eisbn><eisbn>076954262X</eisbn><abstract>In this paper we mine over 80 million twitter micro logs in order to explore whether data from this social media initiative can be used to identify sentiment about tourism and Thailand amid the unrest in that country during the early part of 2010 and further whether analysis of tweets can be used to discern the effect of that unrest on Phuket's tourism environment. It is proposed that this analysis can provide measurable insights through summarization, keyword analysis and clustering. We measure sentiment using a binary choice keyword algorithm. A multi-knowledge based approach is proposed using, Self-Organizing Maps along with sentiment polarity in order to model sentiment. We develop a visual model to express a sentiment concept vocabulary and then apply this model to maximums and minimums in the time series sentiment data. The results show actionable knowledge can be extracted in real time.</abstract><pub>IEEE</pub><doi>10.1109/CIMSiM.2010.98</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2166-8523
ispartof 2010 Second International Conference on Computational Intelligence, Modelling and Simulation, 2010, p.89-94
issn 2166-8523
2166-8531
language eng
recordid cdi_ieee_primary_5701826
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Asia
Business
Data mining
Data visualization
Self organizing feature maps
Semantic Web
Sentiment Mining
Social Networks
SOM
Text Mining
Time series analysis
Tourism
Twitter
title Thailand -- Tourism and Conflict: Modeling Sentiment from Twitter Tweets Using Naïve Bayes and Unsupervised Artificial Neural Nets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thailand%20--%20Tourism%20and%20Conflict:%20Modeling%20Sentiment%20from%20Twitter%20Tweets%20Using%20Na%C3%AFve%20Bayes%20and%20Unsupervised%20Artificial%20Neural%20Nets&rft.btitle=2010%20Second%20International%20Conference%20on%20Computational%20Intelligence,%20Modelling%20and%20Simulation&rft.au=Claster,%20W%20B&rft.date=2010-09&rft.spage=89&rft.epage=94&rft.pages=89-94&rft.issn=2166-8523&rft.eissn=2166-8531&rft.isbn=1424486521&rft.isbn_list=9781424486526&rft_id=info:doi/10.1109/CIMSiM.2010.98&rft_dat=%3Cieee_6IE%3E5701826%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542621&rft.eisbn_list=076954262X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5701826&rfr_iscdi=true