Intrusion detection in VANETs through verification of vehicle movement data

Many Intrusion Detection approaches for Vehicular ad hoc networks (VANETs) are proposed. However, not moving fake vehicles and vehicles with a plausible mobility model are not considered in other approaches. In this paper we propose an innovative signature based intrusion detection method that verif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bissmeyer, Norbert, Stresing, Christian, Bayarou, Kpatcha M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue
container_start_page 166
container_title
container_volume
creator Bissmeyer, Norbert
Stresing, Christian
Bayarou, Kpatcha M.
description Many Intrusion Detection approaches for Vehicular ad hoc networks (VANETs) are proposed. However, not moving fake vehicles and vehicles with a plausible mobility model are not considered in other approaches. In this paper we propose an innovative signature based intrusion detection method that verifies vehicle movement data by applying a plausibility model. With our approach a single fake vehicle can be identified based on the plausibility model even if it simulates an autonomously valid movement. The results from the intrusion detection can be used to detect on the one hand road side attackers simulating faked traffic congestions and on the other hand attackers that try to deny real congestions by inserting moving vehicles into the network.
doi_str_mv 10.1109/VNC.2010.5698232
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5698232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5698232</ieee_id><sourcerecordid>5698232</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1322-2b92350df1bc4ea1a79c54334eb8887fcfb6f569c6a07d01b6139732313afc783</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhccXWGr2gpv5A6nzfixLqFosdVO7LZPJHTPSJJJMC_57oxbBu7n38F0OnIPQLSUzSom9366LGSOjksoaxtkZyqw2VDAhrGRCnqMJo1Ln1ih58Y8pe_nHpL5G2TC8k3EkG3_kBD0v29Qfhti1uIIEPn1fscXb-XqxGXCq--7wVuMj9DFE735wF0ZdR78H3HRHaKBNuHLJ3aCr4PYDZKc9Ra8Pi03xlK9eHpfFfJVHyhnLWWkZl6QKtPQCHHXaeik4F1AaY3TwoVRhDOqVI7oitFSUW80Zp9wFrw2fortf3wgAu48-Nq7_3J2q4V-L8VJK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intrusion detection in VANETs through verification of vehicle movement data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bissmeyer, Norbert ; Stresing, Christian ; Bayarou, Kpatcha M.</creator><creatorcontrib>Bissmeyer, Norbert ; Stresing, Christian ; Bayarou, Kpatcha M.</creatorcontrib><description>Many Intrusion Detection approaches for Vehicular ad hoc networks (VANETs) are proposed. However, not moving fake vehicles and vehicles with a plausible mobility model are not considered in other approaches. In this paper we propose an innovative signature based intrusion detection method that verifies vehicle movement data by applying a plausibility model. With our approach a single fake vehicle can be identified based on the plausibility model even if it simulates an autonomously valid movement. The results from the intrusion detection can be used to detect on the one hand road side attackers simulating faked traffic congestions and on the other hand attackers that try to deny real congestions by inserting moving vehicles into the network.</description><identifier>ISSN: 2157-9857</identifier><identifier>ISBN: 9781424495269</identifier><identifier>ISBN: 1424495261</identifier><identifier>EISSN: 2157-9865</identifier><identifier>EISBN: 9781424495245</identifier><identifier>EISBN: 1424495253</identifier><identifier>EISBN: 9781424495252</identifier><identifier>EISBN: 1424495245</identifier><identifier>DOI: 10.1109/VNC.2010.5698232</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cams ; Intrusion detection ; Mathematical model ; Roads ; Safety ; Sensors ; Vehicles</subject><ispartof>2010 IEEE Vehicular Networking Conference, 2010, p.166-173</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5698232$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5698232$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bissmeyer, Norbert</creatorcontrib><creatorcontrib>Stresing, Christian</creatorcontrib><creatorcontrib>Bayarou, Kpatcha M.</creatorcontrib><title>Intrusion detection in VANETs through verification of vehicle movement data</title><title>2010 IEEE Vehicular Networking Conference</title><addtitle>VNC</addtitle><description>Many Intrusion Detection approaches for Vehicular ad hoc networks (VANETs) are proposed. However, not moving fake vehicles and vehicles with a plausible mobility model are not considered in other approaches. In this paper we propose an innovative signature based intrusion detection method that verifies vehicle movement data by applying a plausibility model. With our approach a single fake vehicle can be identified based on the plausibility model even if it simulates an autonomously valid movement. The results from the intrusion detection can be used to detect on the one hand road side attackers simulating faked traffic congestions and on the other hand attackers that try to deny real congestions by inserting moving vehicles into the network.</description><subject>Cams</subject><subject>Intrusion detection</subject><subject>Mathematical model</subject><subject>Roads</subject><subject>Safety</subject><subject>Sensors</subject><subject>Vehicles</subject><issn>2157-9857</issn><issn>2157-9865</issn><isbn>9781424495269</isbn><isbn>1424495261</isbn><isbn>9781424495245</isbn><isbn>1424495253</isbn><isbn>9781424495252</isbn><isbn>1424495245</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLw0AUhccXWGr2gpv5A6nzfixLqFosdVO7LZPJHTPSJJJMC_57oxbBu7n38F0OnIPQLSUzSom9366LGSOjksoaxtkZyqw2VDAhrGRCnqMJo1Ln1ih58Y8pe_nHpL5G2TC8k3EkG3_kBD0v29Qfhti1uIIEPn1fscXb-XqxGXCq--7wVuMj9DFE735wF0ZdR78H3HRHaKBNuHLJ3aCr4PYDZKc9Ra8Pi03xlK9eHpfFfJVHyhnLWWkZl6QKtPQCHHXaeik4F1AaY3TwoVRhDOqVI7oitFSUW80Zp9wFrw2fortf3wgAu48-Nq7_3J2q4V-L8VJK</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Bissmeyer, Norbert</creator><creator>Stresing, Christian</creator><creator>Bayarou, Kpatcha M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Intrusion detection in VANETs through verification of vehicle movement data</title><author>Bissmeyer, Norbert ; Stresing, Christian ; Bayarou, Kpatcha M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1322-2b92350df1bc4ea1a79c54334eb8887fcfb6f569c6a07d01b6139732313afc783</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cams</topic><topic>Intrusion detection</topic><topic>Mathematical model</topic><topic>Roads</topic><topic>Safety</topic><topic>Sensors</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Bissmeyer, Norbert</creatorcontrib><creatorcontrib>Stresing, Christian</creatorcontrib><creatorcontrib>Bayarou, Kpatcha M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bissmeyer, Norbert</au><au>Stresing, Christian</au><au>Bayarou, Kpatcha M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intrusion detection in VANETs through verification of vehicle movement data</atitle><btitle>2010 IEEE Vehicular Networking Conference</btitle><stitle>VNC</stitle><date>2010-12</date><risdate>2010</risdate><spage>166</spage><epage>173</epage><pages>166-173</pages><issn>2157-9857</issn><eissn>2157-9865</eissn><isbn>9781424495269</isbn><isbn>1424495261</isbn><eisbn>9781424495245</eisbn><eisbn>1424495253</eisbn><eisbn>9781424495252</eisbn><eisbn>1424495245</eisbn><abstract>Many Intrusion Detection approaches for Vehicular ad hoc networks (VANETs) are proposed. However, not moving fake vehicles and vehicles with a plausible mobility model are not considered in other approaches. In this paper we propose an innovative signature based intrusion detection method that verifies vehicle movement data by applying a plausibility model. With our approach a single fake vehicle can be identified based on the plausibility model even if it simulates an autonomously valid movement. The results from the intrusion detection can be used to detect on the one hand road side attackers simulating faked traffic congestions and on the other hand attackers that try to deny real congestions by inserting moving vehicles into the network.</abstract><pub>IEEE</pub><doi>10.1109/VNC.2010.5698232</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-9857
ispartof 2010 IEEE Vehicular Networking Conference, 2010, p.166-173
issn 2157-9857
2157-9865
language eng
recordid cdi_ieee_primary_5698232
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cams
Intrusion detection
Mathematical model
Roads
Safety
Sensors
Vehicles
title Intrusion detection in VANETs through verification of vehicle movement data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intrusion%20detection%20in%20VANETs%20through%20verification%20of%20vehicle%20movement%20data&rft.btitle=2010%20IEEE%20Vehicular%20Networking%20Conference&rft.au=Bissmeyer,%20Norbert&rft.date=2010-12&rft.spage=166&rft.epage=173&rft.pages=166-173&rft.issn=2157-9857&rft.eissn=2157-9865&rft.isbn=9781424495269&rft.isbn_list=1424495261&rft_id=info:doi/10.1109/VNC.2010.5698232&rft_dat=%3Cieee_6IE%3E5698232%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424495245&rft.eisbn_list=1424495253&rft.eisbn_list=9781424495252&rft.eisbn_list=1424495245&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5698232&rfr_iscdi=true