Near infrared spectrometric analysis of titanium dioxide nano particles for size classification

Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Proposing non-destructive, accurate and rapid techniques for analytical aims is of high interest. In this research the relationship between particle si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Garmarudi, A B, Khanmohammadi, M, Khoddami, N, Shabani, K
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue
container_start_page 451
container_title
container_volume
creator Garmarudi, A B
Khanmohammadi, M
Khoddami, N
Shabani, K
description Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Proposing non-destructive, accurate and rapid techniques for analytical aims is of high interest. In this research the relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN. The network was trained by 30 samples and was evaluated by remaining 5 samples. In order to establish whether the new method is applicable for estimation of particle size of nano structured samples, the optimized model was applied to analyze 44 nano TiO2 samples. It was observed that ANN using the back-propagation algorithm is capable of generalization and could correctly predict the average particle size of nano-sized particles.
doi_str_mv 10.1109/NANO.2010.5697778
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5697778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5697778</ieee_id><sourcerecordid>5697778</sourcerecordid><originalsourceid>FETCH-ieee_primary_56977783</originalsourceid><addsrcrecordid>eNp9z71OwzAUBWDzJ9FCHgCx3BdoazsujkeEQExhYY-unGvposSObCNRnp4OhZGzHB190xHiTsmtUtLt-sf-bavlce4fnLW2OxONs50y2hgrW23PxUo5Yzau7eSFWP9Cqy7_wLlr0ZTyIY_Za9savRJDT5iBY8iYaYSykK85zVQze8CI06FwgRSgcsXInzOMnL54JIgYEyyYK_uJCoSUofA3gZ-wFA7ssXKKt-Iq4FSoOfWNuH95fn963TARDUvmGfNhOH1q_9cfH5ZMDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Near infrared spectrometric analysis of titanium dioxide nano particles for size classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Garmarudi, A B ; Khanmohammadi, M ; Khoddami, N ; Shabani, K</creator><creatorcontrib>Garmarudi, A B ; Khanmohammadi, M ; Khoddami, N ; Shabani, K</creatorcontrib><description>Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Proposing non-destructive, accurate and rapid techniques for analytical aims is of high interest. In this research the relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN. The network was trained by 30 samples and was evaluated by remaining 5 samples. In order to establish whether the new method is applicable for estimation of particle size of nano structured samples, the optimized model was applied to analyze 44 nano TiO2 samples. It was observed that ANN using the back-propagation algorithm is capable of generalization and could correctly predict the average particle size of nano-sized particles.</description><identifier>ISSN: 1944-9399</identifier><identifier>ISBN: 1424470331</identifier><identifier>ISBN: 9781424470334</identifier><identifier>EISSN: 1944-9380</identifier><identifier>EISBN: 9781424470327</identifier><identifier>EISBN: 1424470323</identifier><identifier>EISBN: 1424470315</identifier><identifier>EISBN: 9781424470310</identifier><identifier>DOI: 10.1109/NANO.2010.5697778</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>10th IEEE International Conference on Nanotechnology, 2010, p.451-453</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5697778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5697778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garmarudi, A B</creatorcontrib><creatorcontrib>Khanmohammadi, M</creatorcontrib><creatorcontrib>Khoddami, N</creatorcontrib><creatorcontrib>Shabani, K</creatorcontrib><title>Near infrared spectrometric analysis of titanium dioxide nano particles for size classification</title><title>10th IEEE International Conference on Nanotechnology</title><addtitle>NANO</addtitle><description>Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Proposing non-destructive, accurate and rapid techniques for analytical aims is of high interest. In this research the relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN. The network was trained by 30 samples and was evaluated by remaining 5 samples. In order to establish whether the new method is applicable for estimation of particle size of nano structured samples, the optimized model was applied to analyze 44 nano TiO2 samples. It was observed that ANN using the back-propagation algorithm is capable of generalization and could correctly predict the average particle size of nano-sized particles.</description><issn>1944-9399</issn><issn>1944-9380</issn><isbn>1424470331</isbn><isbn>9781424470334</isbn><isbn>9781424470327</isbn><isbn>1424470323</isbn><isbn>1424470315</isbn><isbn>9781424470310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9z71OwzAUBWDzJ9FCHgCx3BdoazsujkeEQExhYY-unGvposSObCNRnp4OhZGzHB190xHiTsmtUtLt-sf-bavlce4fnLW2OxONs50y2hgrW23PxUo5Yzau7eSFWP9Cqy7_wLlr0ZTyIY_Za9savRJDT5iBY8iYaYSykK85zVQze8CI06FwgRSgcsXInzOMnL54JIgYEyyYK_uJCoSUofA3gZ-wFA7ssXKKt-Iq4FSoOfWNuH95fn963TARDUvmGfNhOH1q_9cfH5ZMDA</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Garmarudi, A B</creator><creator>Khanmohammadi, M</creator><creator>Khoddami, N</creator><creator>Shabani, K</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Near infrared spectrometric analysis of titanium dioxide nano particles for size classification</title><author>Garmarudi, A B ; Khanmohammadi, M ; Khoddami, N ; Shabani, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_56977783</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Garmarudi, A B</creatorcontrib><creatorcontrib>Khanmohammadi, M</creatorcontrib><creatorcontrib>Khoddami, N</creatorcontrib><creatorcontrib>Shabani, K</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garmarudi, A B</au><au>Khanmohammadi, M</au><au>Khoddami, N</au><au>Shabani, K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Near infrared spectrometric analysis of titanium dioxide nano particles for size classification</atitle><btitle>10th IEEE International Conference on Nanotechnology</btitle><stitle>NANO</stitle><date>2010-08</date><risdate>2010</risdate><spage>451</spage><epage>453</epage><pages>451-453</pages><issn>1944-9399</issn><eissn>1944-9380</eissn><isbn>1424470331</isbn><isbn>9781424470334</isbn><eisbn>9781424470327</eisbn><eisbn>1424470323</eisbn><eisbn>1424470315</eisbn><eisbn>9781424470310</eisbn><abstract>Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Proposing non-destructive, accurate and rapid techniques for analytical aims is of high interest. In this research the relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN. The network was trained by 30 samples and was evaluated by remaining 5 samples. In order to establish whether the new method is applicable for estimation of particle size of nano structured samples, the optimized model was applied to analyze 44 nano TiO2 samples. It was observed that ANN using the back-propagation algorithm is capable of generalization and could correctly predict the average particle size of nano-sized particles.</abstract><pub>IEEE</pub><doi>10.1109/NANO.2010.5697778</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1944-9399
ispartof 10th IEEE International Conference on Nanotechnology, 2010, p.451-453
issn 1944-9399
1944-9380
language eng
recordid cdi_ieee_primary_5697778
source IEEE Electronic Library (IEL) Conference Proceedings
title Near infrared spectrometric analysis of titanium dioxide nano particles for size classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Near%20infrared%20spectrometric%20analysis%20of%20titanium%20dioxide%20nano%20particles%20for%20size%20classification&rft.btitle=10th%20IEEE%20International%20Conference%20on%20Nanotechnology&rft.au=Garmarudi,%20A%20B&rft.date=2010-08&rft.spage=451&rft.epage=453&rft.pages=451-453&rft.issn=1944-9399&rft.eissn=1944-9380&rft.isbn=1424470331&rft.isbn_list=9781424470334&rft_id=info:doi/10.1109/NANO.2010.5697778&rft_dat=%3Cieee_6IE%3E5697778%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424470327&rft.eisbn_list=1424470323&rft.eisbn_list=1424470315&rft.eisbn_list=9781424470310&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5697778&rfr_iscdi=true